Kernel Antenna Array Processing

We introduce two support vector machine (SVM)-based approaches for solving antenna problems such as beamforming, sidelobe suppression, and maximization of the signal-to-noise ratio. A basic introduction to SVM optimization is provided and a complex nonlinear SVM formulation developed to handle anten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2007-03, Vol.55 (3), p.642-650
Hauptverfasser: Martinez-Ramon, M., Rojo-Alvarez, J.L., Camps-Valls, G., Christodoulou, C.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce two support vector machine (SVM)-based approaches for solving antenna problems such as beamforming, sidelobe suppression, and maximization of the signal-to-noise ratio. A basic introduction to SVM optimization is provided and a complex nonlinear SVM formulation developed to handle antenna array processing in space and time. The new optimization formulation is compared with both the minimum mean square error and the minimum variance distortionless response methods. Several examples are included to show the performance of the new approaches
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2007.891550