Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products
Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methac...
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 2011-01, Vol.1218 (3), p.449-458 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 3 |
container_start_page | 449 |
container_title | Journal of Chromatography A |
container_volume | 1218 |
creator | Ghaffar, A. Verschuren, P.G. Geenevasen, J.A.J. Handels, T. Berard, J. Plum, B. Dias, A.A. Schoenmakers, P.J. van der Wal, Sj |
description | Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methacrylate (pHEMA), poly(lactide-co-glycolide50/50)1550-diol (PLGA(50:50)1550-diol), PLGA(50:50)1550-diol(HEMA)2 and PLGA(50:50)1550-diol(etLDI-HEMA)2 containing ethyl ester lysine diisocyanate (etLDI) linkers using a microwave instrument. Hydrolysis time and temperature were optimized while monitoring the degree of hydrolysis by 1H NMR spectroscopy. Complete hydrolytic degradation was achieved at 120°C and 3bar pressure after 24h. Chemical structure elucidations of the degradation products were carried out using 1H and 13C NMR spectroscopy. The molecular weight (MW) of the polymethacrylic backbone was estimated via size-exclusion chromatography coupled to refractive index detection (SEC-dRI). A bimodal MW distribution was found experimentally, also in the pHEMA starting material. The number average molecular weights (Mn) of the PLGA-links (PLGA(50:50)1550-diol) were calculated by high pressure liquid chromatography–time-of-flight mass spectrometry (HPLC–TOF-MS) and 1H NMR. The amounts of the high and low MW degradation products were determined by SEC-dRI and, HPLC–TOF-MS, respectively. The main hydrolysis products poly (methacrylic acid) (PMAA), ethylene glycol (EG), diethylene glycol (DEG), lactic acid (LA), glycolic acid (GA) and lysine were recovered almost quantitatively. The current method leads to the complete hydrolytic degradation of these materials and will be helpful to study the degradation behavior of these novel cross-linked polymeric biomaterials. |
doi_str_mv | 10.1016/j.chroma.2010.11.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896194500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967310016274</els_id><sourcerecordid>1642280647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-f9928c3a15f4b0bfcb204ecb6238f84e2d40d312d44d3b926b49bde959e654083</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EotvCGyDkC6IHsvhfHLsHJFRRQKrEAThbjj1mvcomW9uptC_Ds-JVlsKpp5HGv_m-GX8IvaJkTQmV77drt0nTzq4ZObbomrT8CVpR1fGGd516ilaEMNpo2fEzdJ7zlhDakY49R2eMUtkJpVfo943NBccR38eSJrw5-DQNhxId9vArWW9LnEY8BbyvbcgFEp4TlI0dAVuXDoMtgPtY96hP0Q75Cn8vaXalUhiG2cVF4h3OsLdpkbOjx3ezHUsM0T04_G-4T5OvIvkFehaqKLw81Qv08-bTj-svze23z1-vP942TrSyNEFrphy3tA2iJ31wPSMCXC8ZV0EJYF4Qz2ktwvNeM9kL3XvQrQbZCqL4BXq76Fbju7neaXYxOxiGeuc0Z6O0pFq0hFTy8lGSSsGYIlJ0FRUL6tKUc4Jg9inubDoYSswxQ7M1S4bmmKGh1NQM69jrk8Pc78A_DP0NrQJvToDNzg4h2dHF_I_jHWvbVlTuw8JB_bn7CMlkF2F04GMCV4yf4uOb_AFjZsCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642280647</pqid></control><display><type>article</type><title>Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ghaffar, A. ; Verschuren, P.G. ; Geenevasen, J.A.J. ; Handels, T. ; Berard, J. ; Plum, B. ; Dias, A.A. ; Schoenmakers, P.J. ; van der Wal, Sj</creator><creatorcontrib>Ghaffar, A. ; Verschuren, P.G. ; Geenevasen, J.A.J. ; Handels, T. ; Berard, J. ; Plum, B. ; Dias, A.A. ; Schoenmakers, P.J. ; van der Wal, Sj</creatorcontrib><description>Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methacrylate (pHEMA), poly(lactide-co-glycolide50/50)1550-diol (PLGA(50:50)1550-diol), PLGA(50:50)1550-diol(HEMA)2 and PLGA(50:50)1550-diol(etLDI-HEMA)2 containing ethyl ester lysine diisocyanate (etLDI) linkers using a microwave instrument. Hydrolysis time and temperature were optimized while monitoring the degree of hydrolysis by 1H NMR spectroscopy. Complete hydrolytic degradation was achieved at 120°C and 3bar pressure after 24h. Chemical structure elucidations of the degradation products were carried out using 1H and 13C NMR spectroscopy. The molecular weight (MW) of the polymethacrylic backbone was estimated via size-exclusion chromatography coupled to refractive index detection (SEC-dRI). A bimodal MW distribution was found experimentally, also in the pHEMA starting material. The number average molecular weights (Mn) of the PLGA-links (PLGA(50:50)1550-diol) were calculated by high pressure liquid chromatography–time-of-flight mass spectrometry (HPLC–TOF-MS) and 1H NMR. The amounts of the high and low MW degradation products were determined by SEC-dRI and, HPLC–TOF-MS, respectively. The main hydrolysis products poly (methacrylic acid) (PMAA), ethylene glycol (EG), diethylene glycol (DEG), lactic acid (LA), glycolic acid (GA) and lysine were recovered almost quantitatively. The current method leads to the complete hydrolytic degradation of these materials and will be helpful to study the degradation behavior of these novel cross-linked polymeric biomaterials.</description><identifier>ISSN: 0021-9673</identifier><identifier>EISSN: 1873-3778</identifier><identifier>DOI: 10.1016/j.chroma.2010.11.053</identifier><identifier>PMID: 21167489</identifier><identifier>CODEN: JOCRAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acrylate ; Biological and medical sciences ; Biomaterials ; Biomedical materials ; Chromatography ; Chromatography, Gel ; Chromatography, High Pressure Liquid ; Degradation ; Glycolide urethane ; HPLC–TOF-MS ; Hydrolysis ; Hydrolytic degradation ; Lactic Acid - chemistry ; Lysine ; Materials Testing ; Medical sciences ; Molecular weight ; NMR ; Nuclear Magnetic Resonance, Biomolecular ; Polyamines - chemistry ; Polyglycolic Acid - chemistry ; Polyhydroxyethyl Methacrylate - analogs & derivatives ; Polyhydroxyethyl Methacrylate - chemistry ; SEC-dRI ; Spectrometry, Mass, Electrospray Ionization ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Synthetic polymeric lactide ; Technology. Biomaterials. Equipments</subject><ispartof>Journal of Chromatography A, 2011-01, Vol.1218 (3), p.449-458</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-f9928c3a15f4b0bfcb204ecb6238f84e2d40d312d44d3b926b49bde959e654083</citedby><cites>FETCH-LOGICAL-c456t-f9928c3a15f4b0bfcb204ecb6238f84e2d40d312d44d3b926b49bde959e654083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021967310016274$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23725554$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21167489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghaffar, A.</creatorcontrib><creatorcontrib>Verschuren, P.G.</creatorcontrib><creatorcontrib>Geenevasen, J.A.J.</creatorcontrib><creatorcontrib>Handels, T.</creatorcontrib><creatorcontrib>Berard, J.</creatorcontrib><creatorcontrib>Plum, B.</creatorcontrib><creatorcontrib>Dias, A.A.</creatorcontrib><creatorcontrib>Schoenmakers, P.J.</creatorcontrib><creatorcontrib>van der Wal, Sj</creatorcontrib><title>Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methacrylate (pHEMA), poly(lactide-co-glycolide50/50)1550-diol (PLGA(50:50)1550-diol), PLGA(50:50)1550-diol(HEMA)2 and PLGA(50:50)1550-diol(etLDI-HEMA)2 containing ethyl ester lysine diisocyanate (etLDI) linkers using a microwave instrument. Hydrolysis time and temperature were optimized while monitoring the degree of hydrolysis by 1H NMR spectroscopy. Complete hydrolytic degradation was achieved at 120°C and 3bar pressure after 24h. Chemical structure elucidations of the degradation products were carried out using 1H and 13C NMR spectroscopy. The molecular weight (MW) of the polymethacrylic backbone was estimated via size-exclusion chromatography coupled to refractive index detection (SEC-dRI). A bimodal MW distribution was found experimentally, also in the pHEMA starting material. The number average molecular weights (Mn) of the PLGA-links (PLGA(50:50)1550-diol) were calculated by high pressure liquid chromatography–time-of-flight mass spectrometry (HPLC–TOF-MS) and 1H NMR. The amounts of the high and low MW degradation products were determined by SEC-dRI and, HPLC–TOF-MS, respectively. The main hydrolysis products poly (methacrylic acid) (PMAA), ethylene glycol (EG), diethylene glycol (DEG), lactic acid (LA), glycolic acid (GA) and lysine were recovered almost quantitatively. The current method leads to the complete hydrolytic degradation of these materials and will be helpful to study the degradation behavior of these novel cross-linked polymeric biomaterials.</description><subject>Acrylate</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chromatography</subject><subject>Chromatography, Gel</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Degradation</subject><subject>Glycolide urethane</subject><subject>HPLC–TOF-MS</subject><subject>Hydrolysis</subject><subject>Hydrolytic degradation</subject><subject>Lactic Acid - chemistry</subject><subject>Lysine</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Molecular weight</subject><subject>NMR</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Polyamines - chemistry</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polyhydroxyethyl Methacrylate - analogs & derivatives</subject><subject>Polyhydroxyethyl Methacrylate - chemistry</subject><subject>SEC-dRI</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Synthetic polymeric lactide</subject><subject>Technology. Biomaterials. Equipments</subject><issn>0021-9673</issn><issn>1873-3778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxi0EotvCGyDkC6IHsvhfHLsHJFRRQKrEAThbjj1mvcomW9uptC_Ds-JVlsKpp5HGv_m-GX8IvaJkTQmV77drt0nTzq4ZObbomrT8CVpR1fGGd516ilaEMNpo2fEzdJ7zlhDakY49R2eMUtkJpVfo943NBccR38eSJrw5-DQNhxId9vArWW9LnEY8BbyvbcgFEp4TlI0dAVuXDoMtgPtY96hP0Q75Cn8vaXalUhiG2cVF4h3OsLdpkbOjx3ezHUsM0T04_G-4T5OvIvkFehaqKLw81Qv08-bTj-svze23z1-vP942TrSyNEFrphy3tA2iJ31wPSMCXC8ZV0EJYF4Qz2ktwvNeM9kL3XvQrQbZCqL4BXq76Fbju7neaXYxOxiGeuc0Z6O0pFq0hFTy8lGSSsGYIlJ0FRUL6tKUc4Jg9inubDoYSswxQ7M1S4bmmKGh1NQM69jrk8Pc78A_DP0NrQJvToDNzg4h2dHF_I_jHWvbVlTuw8JB_bn7CMlkF2F04GMCV4yf4uOb_AFjZsCE</recordid><startdate>20110121</startdate><enddate>20110121</enddate><creator>Ghaffar, A.</creator><creator>Verschuren, P.G.</creator><creator>Geenevasen, J.A.J.</creator><creator>Handels, T.</creator><creator>Berard, J.</creator><creator>Plum, B.</creator><creator>Dias, A.A.</creator><creator>Schoenmakers, P.J.</creator><creator>van der Wal, Sj</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20110121</creationdate><title>Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products</title><author>Ghaffar, A. ; Verschuren, P.G. ; Geenevasen, J.A.J. ; Handels, T. ; Berard, J. ; Plum, B. ; Dias, A.A. ; Schoenmakers, P.J. ; van der Wal, Sj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-f9928c3a15f4b0bfcb204ecb6238f84e2d40d312d44d3b926b49bde959e654083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrylate</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chromatography</topic><topic>Chromatography, Gel</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Degradation</topic><topic>Glycolide urethane</topic><topic>HPLC–TOF-MS</topic><topic>Hydrolysis</topic><topic>Hydrolytic degradation</topic><topic>Lactic Acid - chemistry</topic><topic>Lysine</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Molecular weight</topic><topic>NMR</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Polyamines - chemistry</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polyhydroxyethyl Methacrylate - analogs & derivatives</topic><topic>Polyhydroxyethyl Methacrylate - chemistry</topic><topic>SEC-dRI</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Synthetic polymeric lactide</topic><topic>Technology. Biomaterials. Equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffar, A.</creatorcontrib><creatorcontrib>Verschuren, P.G.</creatorcontrib><creatorcontrib>Geenevasen, J.A.J.</creatorcontrib><creatorcontrib>Handels, T.</creatorcontrib><creatorcontrib>Berard, J.</creatorcontrib><creatorcontrib>Plum, B.</creatorcontrib><creatorcontrib>Dias, A.A.</creatorcontrib><creatorcontrib>Schoenmakers, P.J.</creatorcontrib><creatorcontrib>van der Wal, Sj</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffar, A.</au><au>Verschuren, P.G.</au><au>Geenevasen, J.A.J.</au><au>Handels, T.</au><au>Berard, J.</au><au>Plum, B.</au><au>Dias, A.A.</au><au>Schoenmakers, P.J.</au><au>van der Wal, Sj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2011-01-21</date><risdate>2011</risdate><volume>1218</volume><issue>3</issue><spage>449</spage><epage>458</epage><pages>449-458</pages><issn>0021-9673</issn><eissn>1873-3778</eissn><coden>JOCRAM</coden><abstract>Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methacrylate (pHEMA), poly(lactide-co-glycolide50/50)1550-diol (PLGA(50:50)1550-diol), PLGA(50:50)1550-diol(HEMA)2 and PLGA(50:50)1550-diol(etLDI-HEMA)2 containing ethyl ester lysine diisocyanate (etLDI) linkers using a microwave instrument. Hydrolysis time and temperature were optimized while monitoring the degree of hydrolysis by 1H NMR spectroscopy. Complete hydrolytic degradation was achieved at 120°C and 3bar pressure after 24h. Chemical structure elucidations of the degradation products were carried out using 1H and 13C NMR spectroscopy. The molecular weight (MW) of the polymethacrylic backbone was estimated via size-exclusion chromatography coupled to refractive index detection (SEC-dRI). A bimodal MW distribution was found experimentally, also in the pHEMA starting material. The number average molecular weights (Mn) of the PLGA-links (PLGA(50:50)1550-diol) were calculated by high pressure liquid chromatography–time-of-flight mass spectrometry (HPLC–TOF-MS) and 1H NMR. The amounts of the high and low MW degradation products were determined by SEC-dRI and, HPLC–TOF-MS, respectively. The main hydrolysis products poly (methacrylic acid) (PMAA), ethylene glycol (EG), diethylene glycol (DEG), lactic acid (LA), glycolic acid (GA) and lysine were recovered almost quantitatively. The current method leads to the complete hydrolytic degradation of these materials and will be helpful to study the degradation behavior of these novel cross-linked polymeric biomaterials.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>21167489</pmid><doi>10.1016/j.chroma.2010.11.053</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9673 |
ispartof | Journal of Chromatography A, 2011-01, Vol.1218 (3), p.449-458 |
issn | 0021-9673 1873-3778 |
language | eng |
recordid | cdi_proquest_miscellaneous_896194500 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acrylate Biological and medical sciences Biomaterials Biomedical materials Chromatography Chromatography, Gel Chromatography, High Pressure Liquid Degradation Glycolide urethane HPLC–TOF-MS Hydrolysis Hydrolytic degradation Lactic Acid - chemistry Lysine Materials Testing Medical sciences Molecular weight NMR Nuclear Magnetic Resonance, Biomolecular Polyamines - chemistry Polyglycolic Acid - chemistry Polyhydroxyethyl Methacrylate - analogs & derivatives Polyhydroxyethyl Methacrylate - chemistry SEC-dRI Spectrometry, Mass, Electrospray Ionization Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Synthetic polymeric lactide Technology. Biomaterials. Equipments |
title | Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20in%20vitro%20hydrolytic%20degradation%20of%20polyester%20urethane%20acrylate%20biomaterials:%20Structure%20elucidation,%20separation%20and%20quantification%20of%20degradation%20products&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Ghaffar,%20A.&rft.date=2011-01-21&rft.volume=1218&rft.issue=3&rft.spage=449&rft.epage=458&rft.pages=449-458&rft.issn=0021-9673&rft.eissn=1873-3778&rft.coden=JOCRAM&rft_id=info:doi/10.1016/j.chroma.2010.11.053&rft_dat=%3Cproquest_cross%3E1642280647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642280647&rft_id=info:pmid/21167489&rft_els_id=S0021967310016274&rfr_iscdi=true |