Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products

Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2011-01, Vol.1218 (3), p.449-458
Hauptverfasser: Ghaffar, A., Verschuren, P.G., Geenevasen, J.A.J., Handels, T., Berard, J., Plum, B., Dias, A.A., Schoenmakers, P.J., van der Wal, Sj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 3
container_start_page 449
container_title Journal of Chromatography A
container_volume 1218
creator Ghaffar, A.
Verschuren, P.G.
Geenevasen, J.A.J.
Handels, T.
Berard, J.
Plum, B.
Dias, A.A.
Schoenmakers, P.J.
van der Wal, Sj
description Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methacrylate (pHEMA), poly(lactide-co-glycolide50/50)1550-diol (PLGA(50:50)1550-diol), PLGA(50:50)1550-diol(HEMA)2 and PLGA(50:50)1550-diol(etLDI-HEMA)2 containing ethyl ester lysine diisocyanate (etLDI) linkers using a microwave instrument. Hydrolysis time and temperature were optimized while monitoring the degree of hydrolysis by 1H NMR spectroscopy. Complete hydrolytic degradation was achieved at 120°C and 3bar pressure after 24h. Chemical structure elucidations of the degradation products were carried out using 1H and 13C NMR spectroscopy. The molecular weight (MW) of the polymethacrylic backbone was estimated via size-exclusion chromatography coupled to refractive index detection (SEC-dRI). A bimodal MW distribution was found experimentally, also in the pHEMA starting material. The number average molecular weights (Mn) of the PLGA-links (PLGA(50:50)1550-diol) were calculated by high pressure liquid chromatography–time-of-flight mass spectrometry (HPLC–TOF-MS) and 1H NMR. The amounts of the high and low MW degradation products were determined by SEC-dRI and, HPLC–TOF-MS, respectively. The main hydrolysis products poly (methacrylic acid) (PMAA), ethylene glycol (EG), diethylene glycol (DEG), lactic acid (LA), glycolic acid (GA) and lysine were recovered almost quantitatively. The current method leads to the complete hydrolytic degradation of these materials and will be helpful to study the degradation behavior of these novel cross-linked polymeric biomaterials.
doi_str_mv 10.1016/j.chroma.2010.11.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896194500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967310016274</els_id><sourcerecordid>1642280647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-f9928c3a15f4b0bfcb204ecb6238f84e2d40d312d44d3b926b49bde959e654083</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EotvCGyDkC6IHsvhfHLsHJFRRQKrEAThbjj1mvcomW9uptC_Ds-JVlsKpp5HGv_m-GX8IvaJkTQmV77drt0nTzq4ZObbomrT8CVpR1fGGd516ilaEMNpo2fEzdJ7zlhDakY49R2eMUtkJpVfo943NBccR38eSJrw5-DQNhxId9vArWW9LnEY8BbyvbcgFEp4TlI0dAVuXDoMtgPtY96hP0Q75Cn8vaXalUhiG2cVF4h3OsLdpkbOjx3ezHUsM0T04_G-4T5OvIvkFehaqKLw81Qv08-bTj-svze23z1-vP942TrSyNEFrphy3tA2iJ31wPSMCXC8ZV0EJYF4Qz2ktwvNeM9kL3XvQrQbZCqL4BXq76Fbju7neaXYxOxiGeuc0Z6O0pFq0hFTy8lGSSsGYIlJ0FRUL6tKUc4Jg9inubDoYSswxQ7M1S4bmmKGh1NQM69jrk8Pc78A_DP0NrQJvToDNzg4h2dHF_I_jHWvbVlTuw8JB_bn7CMlkF2F04GMCV4yf4uOb_AFjZsCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642280647</pqid></control><display><type>article</type><title>Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ghaffar, A. ; Verschuren, P.G. ; Geenevasen, J.A.J. ; Handels, T. ; Berard, J. ; Plum, B. ; Dias, A.A. ; Schoenmakers, P.J. ; van der Wal, Sj</creator><creatorcontrib>Ghaffar, A. ; Verschuren, P.G. ; Geenevasen, J.A.J. ; Handels, T. ; Berard, J. ; Plum, B. ; Dias, A.A. ; Schoenmakers, P.J. ; van der Wal, Sj</creatorcontrib><description>Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methacrylate (pHEMA), poly(lactide-co-glycolide50/50)1550-diol (PLGA(50:50)1550-diol), PLGA(50:50)1550-diol(HEMA)2 and PLGA(50:50)1550-diol(etLDI-HEMA)2 containing ethyl ester lysine diisocyanate (etLDI) linkers using a microwave instrument. Hydrolysis time and temperature were optimized while monitoring the degree of hydrolysis by 1H NMR spectroscopy. Complete hydrolytic degradation was achieved at 120°C and 3bar pressure after 24h. Chemical structure elucidations of the degradation products were carried out using 1H and 13C NMR spectroscopy. The molecular weight (MW) of the polymethacrylic backbone was estimated via size-exclusion chromatography coupled to refractive index detection (SEC-dRI). A bimodal MW distribution was found experimentally, also in the pHEMA starting material. The number average molecular weights (Mn) of the PLGA-links (PLGA(50:50)1550-diol) were calculated by high pressure liquid chromatography–time-of-flight mass spectrometry (HPLC–TOF-MS) and 1H NMR. The amounts of the high and low MW degradation products were determined by SEC-dRI and, HPLC–TOF-MS, respectively. The main hydrolysis products poly (methacrylic acid) (PMAA), ethylene glycol (EG), diethylene glycol (DEG), lactic acid (LA), glycolic acid (GA) and lysine were recovered almost quantitatively. The current method leads to the complete hydrolytic degradation of these materials and will be helpful to study the degradation behavior of these novel cross-linked polymeric biomaterials.</description><identifier>ISSN: 0021-9673</identifier><identifier>EISSN: 1873-3778</identifier><identifier>DOI: 10.1016/j.chroma.2010.11.053</identifier><identifier>PMID: 21167489</identifier><identifier>CODEN: JOCRAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acrylate ; Biological and medical sciences ; Biomaterials ; Biomedical materials ; Chromatography ; Chromatography, Gel ; Chromatography, High Pressure Liquid ; Degradation ; Glycolide urethane ; HPLC–TOF-MS ; Hydrolysis ; Hydrolytic degradation ; Lactic Acid - chemistry ; Lysine ; Materials Testing ; Medical sciences ; Molecular weight ; NMR ; Nuclear Magnetic Resonance, Biomolecular ; Polyamines - chemistry ; Polyglycolic Acid - chemistry ; Polyhydroxyethyl Methacrylate - analogs &amp; derivatives ; Polyhydroxyethyl Methacrylate - chemistry ; SEC-dRI ; Spectrometry, Mass, Electrospray Ionization ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Synthetic polymeric lactide ; Technology. Biomaterials. Equipments</subject><ispartof>Journal of Chromatography A, 2011-01, Vol.1218 (3), p.449-458</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-f9928c3a15f4b0bfcb204ecb6238f84e2d40d312d44d3b926b49bde959e654083</citedby><cites>FETCH-LOGICAL-c456t-f9928c3a15f4b0bfcb204ecb6238f84e2d40d312d44d3b926b49bde959e654083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021967310016274$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23725554$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21167489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghaffar, A.</creatorcontrib><creatorcontrib>Verschuren, P.G.</creatorcontrib><creatorcontrib>Geenevasen, J.A.J.</creatorcontrib><creatorcontrib>Handels, T.</creatorcontrib><creatorcontrib>Berard, J.</creatorcontrib><creatorcontrib>Plum, B.</creatorcontrib><creatorcontrib>Dias, A.A.</creatorcontrib><creatorcontrib>Schoenmakers, P.J.</creatorcontrib><creatorcontrib>van der Wal, Sj</creatorcontrib><title>Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methacrylate (pHEMA), poly(lactide-co-glycolide50/50)1550-diol (PLGA(50:50)1550-diol), PLGA(50:50)1550-diol(HEMA)2 and PLGA(50:50)1550-diol(etLDI-HEMA)2 containing ethyl ester lysine diisocyanate (etLDI) linkers using a microwave instrument. Hydrolysis time and temperature were optimized while monitoring the degree of hydrolysis by 1H NMR spectroscopy. Complete hydrolytic degradation was achieved at 120°C and 3bar pressure after 24h. Chemical structure elucidations of the degradation products were carried out using 1H and 13C NMR spectroscopy. The molecular weight (MW) of the polymethacrylic backbone was estimated via size-exclusion chromatography coupled to refractive index detection (SEC-dRI). A bimodal MW distribution was found experimentally, also in the pHEMA starting material. The number average molecular weights (Mn) of the PLGA-links (PLGA(50:50)1550-diol) were calculated by high pressure liquid chromatography–time-of-flight mass spectrometry (HPLC–TOF-MS) and 1H NMR. The amounts of the high and low MW degradation products were determined by SEC-dRI and, HPLC–TOF-MS, respectively. The main hydrolysis products poly (methacrylic acid) (PMAA), ethylene glycol (EG), diethylene glycol (DEG), lactic acid (LA), glycolic acid (GA) and lysine were recovered almost quantitatively. The current method leads to the complete hydrolytic degradation of these materials and will be helpful to study the degradation behavior of these novel cross-linked polymeric biomaterials.</description><subject>Acrylate</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chromatography</subject><subject>Chromatography, Gel</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Degradation</subject><subject>Glycolide urethane</subject><subject>HPLC–TOF-MS</subject><subject>Hydrolysis</subject><subject>Hydrolytic degradation</subject><subject>Lactic Acid - chemistry</subject><subject>Lysine</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Molecular weight</subject><subject>NMR</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Polyamines - chemistry</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polyhydroxyethyl Methacrylate - analogs &amp; derivatives</subject><subject>Polyhydroxyethyl Methacrylate - chemistry</subject><subject>SEC-dRI</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Synthetic polymeric lactide</subject><subject>Technology. Biomaterials. Equipments</subject><issn>0021-9673</issn><issn>1873-3778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxi0EotvCGyDkC6IHsvhfHLsHJFRRQKrEAThbjj1mvcomW9uptC_Ds-JVlsKpp5HGv_m-GX8IvaJkTQmV77drt0nTzq4ZObbomrT8CVpR1fGGd516ilaEMNpo2fEzdJ7zlhDakY49R2eMUtkJpVfo943NBccR38eSJrw5-DQNhxId9vArWW9LnEY8BbyvbcgFEp4TlI0dAVuXDoMtgPtY96hP0Q75Cn8vaXalUhiG2cVF4h3OsLdpkbOjx3ezHUsM0T04_G-4T5OvIvkFehaqKLw81Qv08-bTj-svze23z1-vP942TrSyNEFrphy3tA2iJ31wPSMCXC8ZV0EJYF4Qz2ktwvNeM9kL3XvQrQbZCqL4BXq76Fbju7neaXYxOxiGeuc0Z6O0pFq0hFTy8lGSSsGYIlJ0FRUL6tKUc4Jg9inubDoYSswxQ7M1S4bmmKGh1NQM69jrk8Pc78A_DP0NrQJvToDNzg4h2dHF_I_jHWvbVlTuw8JB_bn7CMlkF2F04GMCV4yf4uOb_AFjZsCE</recordid><startdate>20110121</startdate><enddate>20110121</enddate><creator>Ghaffar, A.</creator><creator>Verschuren, P.G.</creator><creator>Geenevasen, J.A.J.</creator><creator>Handels, T.</creator><creator>Berard, J.</creator><creator>Plum, B.</creator><creator>Dias, A.A.</creator><creator>Schoenmakers, P.J.</creator><creator>van der Wal, Sj</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20110121</creationdate><title>Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products</title><author>Ghaffar, A. ; Verschuren, P.G. ; Geenevasen, J.A.J. ; Handels, T. ; Berard, J. ; Plum, B. ; Dias, A.A. ; Schoenmakers, P.J. ; van der Wal, Sj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-f9928c3a15f4b0bfcb204ecb6238f84e2d40d312d44d3b926b49bde959e654083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrylate</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chromatography</topic><topic>Chromatography, Gel</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Degradation</topic><topic>Glycolide urethane</topic><topic>HPLC–TOF-MS</topic><topic>Hydrolysis</topic><topic>Hydrolytic degradation</topic><topic>Lactic Acid - chemistry</topic><topic>Lysine</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Molecular weight</topic><topic>NMR</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Polyamines - chemistry</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polyhydroxyethyl Methacrylate - analogs &amp; derivatives</topic><topic>Polyhydroxyethyl Methacrylate - chemistry</topic><topic>SEC-dRI</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Synthetic polymeric lactide</topic><topic>Technology. Biomaterials. Equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffar, A.</creatorcontrib><creatorcontrib>Verschuren, P.G.</creatorcontrib><creatorcontrib>Geenevasen, J.A.J.</creatorcontrib><creatorcontrib>Handels, T.</creatorcontrib><creatorcontrib>Berard, J.</creatorcontrib><creatorcontrib>Plum, B.</creatorcontrib><creatorcontrib>Dias, A.A.</creatorcontrib><creatorcontrib>Schoenmakers, P.J.</creatorcontrib><creatorcontrib>van der Wal, Sj</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffar, A.</au><au>Verschuren, P.G.</au><au>Geenevasen, J.A.J.</au><au>Handels, T.</au><au>Berard, J.</au><au>Plum, B.</au><au>Dias, A.A.</au><au>Schoenmakers, P.J.</au><au>van der Wal, Sj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2011-01-21</date><risdate>2011</risdate><volume>1218</volume><issue>3</issue><spage>449</spage><epage>458</epage><pages>449-458</pages><issn>0021-9673</issn><eissn>1873-3778</eissn><coden>JOCRAM</coden><abstract>Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methacrylate (pHEMA), poly(lactide-co-glycolide50/50)1550-diol (PLGA(50:50)1550-diol), PLGA(50:50)1550-diol(HEMA)2 and PLGA(50:50)1550-diol(etLDI-HEMA)2 containing ethyl ester lysine diisocyanate (etLDI) linkers using a microwave instrument. Hydrolysis time and temperature were optimized while monitoring the degree of hydrolysis by 1H NMR spectroscopy. Complete hydrolytic degradation was achieved at 120°C and 3bar pressure after 24h. Chemical structure elucidations of the degradation products were carried out using 1H and 13C NMR spectroscopy. The molecular weight (MW) of the polymethacrylic backbone was estimated via size-exclusion chromatography coupled to refractive index detection (SEC-dRI). A bimodal MW distribution was found experimentally, also in the pHEMA starting material. The number average molecular weights (Mn) of the PLGA-links (PLGA(50:50)1550-diol) were calculated by high pressure liquid chromatography–time-of-flight mass spectrometry (HPLC–TOF-MS) and 1H NMR. The amounts of the high and low MW degradation products were determined by SEC-dRI and, HPLC–TOF-MS, respectively. The main hydrolysis products poly (methacrylic acid) (PMAA), ethylene glycol (EG), diethylene glycol (DEG), lactic acid (LA), glycolic acid (GA) and lysine were recovered almost quantitatively. The current method leads to the complete hydrolytic degradation of these materials and will be helpful to study the degradation behavior of these novel cross-linked polymeric biomaterials.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>21167489</pmid><doi>10.1016/j.chroma.2010.11.053</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9673
ispartof Journal of Chromatography A, 2011-01, Vol.1218 (3), p.449-458
issn 0021-9673
1873-3778
language eng
recordid cdi_proquest_miscellaneous_896194500
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acrylate
Biological and medical sciences
Biomaterials
Biomedical materials
Chromatography
Chromatography, Gel
Chromatography, High Pressure Liquid
Degradation
Glycolide urethane
HPLC–TOF-MS
Hydrolysis
Hydrolytic degradation
Lactic Acid - chemistry
Lysine
Materials Testing
Medical sciences
Molecular weight
NMR
Nuclear Magnetic Resonance, Biomolecular
Polyamines - chemistry
Polyglycolic Acid - chemistry
Polyhydroxyethyl Methacrylate - analogs & derivatives
Polyhydroxyethyl Methacrylate - chemistry
SEC-dRI
Spectrometry, Mass, Electrospray Ionization
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Synthetic polymeric lactide
Technology. Biomaterials. Equipments
title Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20in%20vitro%20hydrolytic%20degradation%20of%20polyester%20urethane%20acrylate%20biomaterials:%20Structure%20elucidation,%20separation%20and%20quantification%20of%20degradation%20products&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Ghaffar,%20A.&rft.date=2011-01-21&rft.volume=1218&rft.issue=3&rft.spage=449&rft.epage=458&rft.pages=449-458&rft.issn=0021-9673&rft.eissn=1873-3778&rft.coden=JOCRAM&rft_id=info:doi/10.1016/j.chroma.2010.11.053&rft_dat=%3Cproquest_cross%3E1642280647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642280647&rft_id=info:pmid/21167489&rft_els_id=S0021967310016274&rfr_iscdi=true