Generic wavelet-based hyperspectral classification applied to vegetation stress detection

This communication studies the detection of vegetation stress in hyperspectral data. Compared to traditional vegetation stress indices, the proposed approach uses the complete reflectance spectrum and its wavelet representation. The detection strategy is formulated as a classification problem. Exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2005-03, Vol.43 (3), p.610-614
Hauptverfasser: Kempeneers, P., De Backer, S., Debruyn, W., Coppin, P., Scheunders, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This communication studies the detection of vegetation stress in hyperspectral data. Compared to traditional vegetation stress indices, the proposed approach uses the complete reflectance spectrum and its wavelet representation. The detection strategy is formulated as a classification problem. Experiments are conducted on fruit tree stress detection. The experiments show the superior performance of the proposed strategy and demonstrate its generic nature.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2004.839545