A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys
► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-c...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2011-07, Vol.50 (9), p.2573-2585 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2585 |
---|---|
container_issue | 9 |
container_start_page | 2573 |
container_title | Computational materials science |
container_volume | 50 |
creator | Tan, Wenda Bailey, Neil S. Shin, Yung C. |
description | ► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-component and multi-phase alloys. ► Simulation results agree with analytical and experimental results.
A novel numerical model is developed by integrating Cellular Automata (CA) and Phase Field (PF) methods to predict the dendrite growth of multi-component and multi-phase alloys during the solidification process. The micro-scale CA model is built to track dendrite growth and associated mass redistribution, while the 1D PF model reformulated in a polar coordinate system is used to calculate the growth kinetics for the CA interface cells. The integrated CAPF model can take advantage of the high computational efficiency of the CA model and the comprehensive physical background of the PF model. The model has been validated against an analytical model and then applied to the cases of casting and laser welding processes. Good quantitative agreement is obtained between the simulated results and the experiments. |
doi_str_mv | 10.1016/j.commatsci.2011.03.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896192345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025611002059</els_id><sourcerecordid>896192345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-e6f3f5cd51fb1634d570b83395e40439d1d7f6197d5379e7de2cf9d89b6b17523</originalsourceid><addsrcrecordid>eNqFkcFu3CAYhFHVSNmmeYZwqXqyC8Y25rhaNWmlSO2hPSMMPwkrDFvAK-WR-pZld6Nce0Iazcynn0HojpKWEjp-2bc6LosqWbu2I5S2hLWk79-hDZ24aMhE6Hu0IaLjDemG8Rp9yHlPalJM3Qb93eIQj-CxCwWekipg8BJNFWrr7IILT3gH3q9eJbxdS6wkhVUw-OezyoDvHfiagPIcTcY2Jrw4nWIuadVlTYDhGP1aXAzYrOnUlqN3xlmn1VmNFi-rL66pvEMMEMq5_aIdzgzlfXzJH9GVVT7D7et7g37ff_21-9Y8_nj4vts-NppxXhoYLbODNgO1Mx1ZbwZO5okxMUBPeiYMNdyOVHAzMC6AG-i0FWYS8zhTPnTsBn2-9B5S_LNCLnJxWdcvUAHimuUkarpj_VCd_OI8HZwTWHlIblHpRVIiT9vIvXzbRp62kYTJuk1NfnplqKyVt0kF7fJbvOs7PvZiqr7txQf14KODJGsTBA3GJdBFmuj-y_oHuvauMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896192345</pqid></control><display><type>article</type><title>A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Tan, Wenda ; Bailey, Neil S. ; Shin, Yung C.</creator><creatorcontrib>Tan, Wenda ; Bailey, Neil S. ; Shin, Yung C.</creatorcontrib><description>► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-component and multi-phase alloys. ► Simulation results agree with analytical and experimental results.
A novel numerical model is developed by integrating Cellular Automata (CA) and Phase Field (PF) methods to predict the dendrite growth of multi-component and multi-phase alloys during the solidification process. The micro-scale CA model is built to track dendrite growth and associated mass redistribution, while the 1D PF model reformulated in a polar coordinate system is used to calculate the growth kinetics for the CA interface cells. The integrated CAPF model can take advantage of the high computational efficiency of the CA model and the comprehensive physical background of the PF model. The model has been validated against an analytical model and then applied to the cases of casting and laser welding processes. Good quantitative agreement is obtained between the simulated results and the experiments.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2011.03.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloys ; Applied sciences ; Cellular automata ; Computational efficiency ; Cross-disciplinary physics: materials science; rheology ; Dendritic structure ; Evolution ; Exact sciences and technology ; Joining, thermal cutting: metallurgical aspects ; Materials science ; Mathematical analysis ; Mathematical models ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification ; Welding</subject><ispartof>Computational materials science, 2011-07, Vol.50 (9), p.2573-2585</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-e6f3f5cd51fb1634d570b83395e40439d1d7f6197d5379e7de2cf9d89b6b17523</citedby><cites>FETCH-LOGICAL-c377t-e6f3f5cd51fb1634d570b83395e40439d1d7f6197d5379e7de2cf9d89b6b17523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025611002059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24276498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Wenda</creatorcontrib><creatorcontrib>Bailey, Neil S.</creatorcontrib><creatorcontrib>Shin, Yung C.</creatorcontrib><title>A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys</title><title>Computational materials science</title><description>► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-component and multi-phase alloys. ► Simulation results agree with analytical and experimental results.
A novel numerical model is developed by integrating Cellular Automata (CA) and Phase Field (PF) methods to predict the dendrite growth of multi-component and multi-phase alloys during the solidification process. The micro-scale CA model is built to track dendrite growth and associated mass redistribution, while the 1D PF model reformulated in a polar coordinate system is used to calculate the growth kinetics for the CA interface cells. The integrated CAPF model can take advantage of the high computational efficiency of the CA model and the comprehensive physical background of the PF model. The model has been validated against an analytical model and then applied to the cases of casting and laser welding processes. Good quantitative agreement is obtained between the simulated results and the experiments.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Cellular automata</subject><subject>Computational efficiency</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dendritic structure</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><subject>Welding</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu3CAYhFHVSNmmeYZwqXqyC8Y25rhaNWmlSO2hPSMMPwkrDFvAK-WR-pZld6Nce0Iazcynn0HojpKWEjp-2bc6LosqWbu2I5S2hLWk79-hDZ24aMhE6Hu0IaLjDemG8Rp9yHlPalJM3Qb93eIQj-CxCwWekipg8BJNFWrr7IILT3gH3q9eJbxdS6wkhVUw-OezyoDvHfiagPIcTcY2Jrw4nWIuadVlTYDhGP1aXAzYrOnUlqN3xlmn1VmNFi-rL66pvEMMEMq5_aIdzgzlfXzJH9GVVT7D7et7g37ff_21-9Y8_nj4vts-NppxXhoYLbODNgO1Mx1ZbwZO5okxMUBPeiYMNdyOVHAzMC6AG-i0FWYS8zhTPnTsBn2-9B5S_LNCLnJxWdcvUAHimuUkarpj_VCd_OI8HZwTWHlIblHpRVIiT9vIvXzbRp62kYTJuk1NfnplqKyVt0kF7fJbvOs7PvZiqr7txQf14KODJGsTBA3GJdBFmuj-y_oHuvauMQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Tan, Wenda</creator><creator>Bailey, Neil S.</creator><creator>Shin, Yung C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys</title><author>Tan, Wenda ; Bailey, Neil S. ; Shin, Yung C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-e6f3f5cd51fb1634d570b83395e40439d1d7f6197d5379e7de2cf9d89b6b17523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Cellular automata</topic><topic>Computational efficiency</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dendritic structure</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Wenda</creatorcontrib><creatorcontrib>Bailey, Neil S.</creatorcontrib><creatorcontrib>Shin, Yung C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Wenda</au><au>Bailey, Neil S.</au><au>Shin, Yung C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys</atitle><jtitle>Computational materials science</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>50</volume><issue>9</issue><spage>2573</spage><epage>2585</epage><pages>2573-2585</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-component and multi-phase alloys. ► Simulation results agree with analytical and experimental results.
A novel numerical model is developed by integrating Cellular Automata (CA) and Phase Field (PF) methods to predict the dendrite growth of multi-component and multi-phase alloys during the solidification process. The micro-scale CA model is built to track dendrite growth and associated mass redistribution, while the 1D PF model reformulated in a polar coordinate system is used to calculate the growth kinetics for the CA interface cells. The integrated CAPF model can take advantage of the high computational efficiency of the CA model and the comprehensive physical background of the PF model. The model has been validated against an analytical model and then applied to the cases of casting and laser welding processes. Good quantitative agreement is obtained between the simulated results and the experiments.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2011.03.044</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2011-07, Vol.50 (9), p.2573-2585 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_896192345 |
source | Elsevier ScienceDirect Journals |
subjects | Alloys Applied sciences Cellular automata Computational efficiency Cross-disciplinary physics: materials science rheology Dendritic structure Evolution Exact sciences and technology Joining, thermal cutting: metallurgical aspects Materials science Mathematical analysis Mathematical models Metals. Metallurgy Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Solidification Welding |
title | A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20integrated%20model%20combining%20Cellular%20Automata%20and%20Phase%20Field%20methods%20for%20microstructure%20evolution%20during%20solidification%20of%20multi-component%20and%20multi-phase%20alloys&rft.jtitle=Computational%20materials%20science&rft.au=Tan,%20Wenda&rft.date=2011-07-01&rft.volume=50&rft.issue=9&rft.spage=2573&rft.epage=2585&rft.pages=2573-2585&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2011.03.044&rft_dat=%3Cproquest_cross%3E896192345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896192345&rft_id=info:pmid/&rft_els_id=S0927025611002059&rfr_iscdi=true |