A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys

► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2011-07, Vol.50 (9), p.2573-2585
Hauptverfasser: Tan, Wenda, Bailey, Neil S., Shin, Yung C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2585
container_issue 9
container_start_page 2573
container_title Computational materials science
container_volume 50
creator Tan, Wenda
Bailey, Neil S.
Shin, Yung C.
description ► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-component and multi-phase alloys. ► Simulation results agree with analytical and experimental results. A novel numerical model is developed by integrating Cellular Automata (CA) and Phase Field (PF) methods to predict the dendrite growth of multi-component and multi-phase alloys during the solidification process. The micro-scale CA model is built to track dendrite growth and associated mass redistribution, while the 1D PF model reformulated in a polar coordinate system is used to calculate the growth kinetics for the CA interface cells. The integrated CAPF model can take advantage of the high computational efficiency of the CA model and the comprehensive physical background of the PF model. The model has been validated against an analytical model and then applied to the cases of casting and laser welding processes. Good quantitative agreement is obtained between the simulated results and the experiments.
doi_str_mv 10.1016/j.commatsci.2011.03.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896192345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025611002059</els_id><sourcerecordid>896192345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-e6f3f5cd51fb1634d570b83395e40439d1d7f6197d5379e7de2cf9d89b6b17523</originalsourceid><addsrcrecordid>eNqFkcFu3CAYhFHVSNmmeYZwqXqyC8Y25rhaNWmlSO2hPSMMPwkrDFvAK-WR-pZld6Nce0Iazcynn0HojpKWEjp-2bc6LosqWbu2I5S2hLWk79-hDZ24aMhE6Hu0IaLjDemG8Rp9yHlPalJM3Qb93eIQj-CxCwWekipg8BJNFWrr7IILT3gH3q9eJbxdS6wkhVUw-OezyoDvHfiagPIcTcY2Jrw4nWIuadVlTYDhGP1aXAzYrOnUlqN3xlmn1VmNFi-rL66pvEMMEMq5_aIdzgzlfXzJH9GVVT7D7et7g37ff_21-9Y8_nj4vts-NppxXhoYLbODNgO1Mx1ZbwZO5okxMUBPeiYMNdyOVHAzMC6AG-i0FWYS8zhTPnTsBn2-9B5S_LNCLnJxWdcvUAHimuUkarpj_VCd_OI8HZwTWHlIblHpRVIiT9vIvXzbRp62kYTJuk1NfnplqKyVt0kF7fJbvOs7PvZiqr7txQf14KODJGsTBA3GJdBFmuj-y_oHuvauMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896192345</pqid></control><display><type>article</type><title>A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Tan, Wenda ; Bailey, Neil S. ; Shin, Yung C.</creator><creatorcontrib>Tan, Wenda ; Bailey, Neil S. ; Shin, Yung C.</creatorcontrib><description>► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-component and multi-phase alloys. ► Simulation results agree with analytical and experimental results. A novel numerical model is developed by integrating Cellular Automata (CA) and Phase Field (PF) methods to predict the dendrite growth of multi-component and multi-phase alloys during the solidification process. The micro-scale CA model is built to track dendrite growth and associated mass redistribution, while the 1D PF model reformulated in a polar coordinate system is used to calculate the growth kinetics for the CA interface cells. The integrated CAPF model can take advantage of the high computational efficiency of the CA model and the comprehensive physical background of the PF model. The model has been validated against an analytical model and then applied to the cases of casting and laser welding processes. Good quantitative agreement is obtained between the simulated results and the experiments.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2011.03.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloys ; Applied sciences ; Cellular automata ; Computational efficiency ; Cross-disciplinary physics: materials science; rheology ; Dendritic structure ; Evolution ; Exact sciences and technology ; Joining, thermal cutting: metallurgical aspects ; Materials science ; Mathematical analysis ; Mathematical models ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification ; Welding</subject><ispartof>Computational materials science, 2011-07, Vol.50 (9), p.2573-2585</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-e6f3f5cd51fb1634d570b83395e40439d1d7f6197d5379e7de2cf9d89b6b17523</citedby><cites>FETCH-LOGICAL-c377t-e6f3f5cd51fb1634d570b83395e40439d1d7f6197d5379e7de2cf9d89b6b17523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025611002059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24276498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Wenda</creatorcontrib><creatorcontrib>Bailey, Neil S.</creatorcontrib><creatorcontrib>Shin, Yung C.</creatorcontrib><title>A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys</title><title>Computational materials science</title><description>► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-component and multi-phase alloys. ► Simulation results agree with analytical and experimental results. A novel numerical model is developed by integrating Cellular Automata (CA) and Phase Field (PF) methods to predict the dendrite growth of multi-component and multi-phase alloys during the solidification process. The micro-scale CA model is built to track dendrite growth and associated mass redistribution, while the 1D PF model reformulated in a polar coordinate system is used to calculate the growth kinetics for the CA interface cells. The integrated CAPF model can take advantage of the high computational efficiency of the CA model and the comprehensive physical background of the PF model. The model has been validated against an analytical model and then applied to the cases of casting and laser welding processes. Good quantitative agreement is obtained between the simulated results and the experiments.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Cellular automata</subject><subject>Computational efficiency</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dendritic structure</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><subject>Welding</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu3CAYhFHVSNmmeYZwqXqyC8Y25rhaNWmlSO2hPSMMPwkrDFvAK-WR-pZld6Nce0Iazcynn0HojpKWEjp-2bc6LosqWbu2I5S2hLWk79-hDZ24aMhE6Hu0IaLjDemG8Rp9yHlPalJM3Qb93eIQj-CxCwWekipg8BJNFWrr7IILT3gH3q9eJbxdS6wkhVUw-OezyoDvHfiagPIcTcY2Jrw4nWIuadVlTYDhGP1aXAzYrOnUlqN3xlmn1VmNFi-rL66pvEMMEMq5_aIdzgzlfXzJH9GVVT7D7et7g37ff_21-9Y8_nj4vts-NppxXhoYLbODNgO1Mx1ZbwZO5okxMUBPeiYMNdyOVHAzMC6AG-i0FWYS8zhTPnTsBn2-9B5S_LNCLnJxWdcvUAHimuUkarpj_VCd_OI8HZwTWHlIblHpRVIiT9vIvXzbRp62kYTJuk1NfnplqKyVt0kF7fJbvOs7PvZiqr7txQf14KODJGsTBA3GJdBFmuj-y_oHuvauMQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Tan, Wenda</creator><creator>Bailey, Neil S.</creator><creator>Shin, Yung C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys</title><author>Tan, Wenda ; Bailey, Neil S. ; Shin, Yung C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-e6f3f5cd51fb1634d570b83395e40439d1d7f6197d5379e7de2cf9d89b6b17523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Cellular automata</topic><topic>Computational efficiency</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dendritic structure</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Wenda</creatorcontrib><creatorcontrib>Bailey, Neil S.</creatorcontrib><creatorcontrib>Shin, Yung C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Wenda</au><au>Bailey, Neil S.</au><au>Shin, Yung C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys</atitle><jtitle>Computational materials science</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>50</volume><issue>9</issue><spage>2573</spage><epage>2585</epage><pages>2573-2585</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>► A dendrite growth model is built by combining Cellular Automata and Phase Field. ► The 1D PF model in polar coordinates computes the growth kinetics for the CA model. ► The combined 2D model maintains CA computational efficiency while using PF kinetics. ► The model is capable of simulating multi-component and multi-phase alloys. ► Simulation results agree with analytical and experimental results. A novel numerical model is developed by integrating Cellular Automata (CA) and Phase Field (PF) methods to predict the dendrite growth of multi-component and multi-phase alloys during the solidification process. The micro-scale CA model is built to track dendrite growth and associated mass redistribution, while the 1D PF model reformulated in a polar coordinate system is used to calculate the growth kinetics for the CA interface cells. The integrated CAPF model can take advantage of the high computational efficiency of the CA model and the comprehensive physical background of the PF model. The model has been validated against an analytical model and then applied to the cases of casting and laser welding processes. Good quantitative agreement is obtained between the simulated results and the experiments.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2011.03.044</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2011-07, Vol.50 (9), p.2573-2585
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_896192345
source Elsevier ScienceDirect Journals
subjects Alloys
Applied sciences
Cellular automata
Computational efficiency
Cross-disciplinary physics: materials science
rheology
Dendritic structure
Evolution
Exact sciences and technology
Joining, thermal cutting: metallurgical aspects
Materials science
Mathematical analysis
Mathematical models
Metals. Metallurgy
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Solidification
Welding
title A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20integrated%20model%20combining%20Cellular%20Automata%20and%20Phase%20Field%20methods%20for%20microstructure%20evolution%20during%20solidification%20of%20multi-component%20and%20multi-phase%20alloys&rft.jtitle=Computational%20materials%20science&rft.au=Tan,%20Wenda&rft.date=2011-07-01&rft.volume=50&rft.issue=9&rft.spage=2573&rft.epage=2585&rft.pages=2573-2585&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2011.03.044&rft_dat=%3Cproquest_cross%3E896192345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896192345&rft_id=info:pmid/&rft_els_id=S0927025611002059&rfr_iscdi=true