Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor

Gold nanoparticles dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Au-BMI·PF(6)) were supported in chitin (CTN) chemically crosslinked with glyoxal and epichlorohydrin to obtain a new supported ionic liquid phase (SILP) catalyst with high catalytic activity, and providing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2011-06, Vol.136 (12), p.2495-2505
Hauptverfasser: BRONDANI, Daniela, ZAPP, Eduardo, CRUZ VIEIRA, Iolanda, DUPONT, Jairton, WEBER SCHEEREN, Carla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2505
container_issue 12
container_start_page 2495
container_title Analyst (London)
container_volume 136
creator BRONDANI, Daniela
ZAPP, Eduardo
CRUZ VIEIRA, Iolanda
DUPONT, Jairton
WEBER SCHEEREN, Carla
description Gold nanoparticles dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Au-BMI·PF(6)) were supported in chitin (CTN) chemically crosslinked with glyoxal and epichlorohydrin to obtain a new supported ionic liquid phase (SILP) catalyst with high catalytic activity, and providing an excellent environment for enzyme immobilization. This modified biopolymer matrix (Au-BMI·PF(6)-CTN) was used as a support for the immobilization of the enzyme peroxidase (PER) from pea (Pisum sativum), and employed to develop a new biosensor for rosmarinic acid (RA) determination in pharmaceutical samples by square-wave voltammetry. In the presence of hydrogen peroxide, the PER catalyzes the oxidation of RA to the corresponding o-quinone, which is electrochemically reduced at a potential of +0.14 V vs. Ag/AgCl. Under optimized conditions, the resulting peak current increased linearly for the RA concentration range of 0.50 to 23.70 μM with a detection limit of 70.09 nM. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (15% decrease in response over 120 days). The method was successfully applied to the determination of RA content in pharmaceutical samples, with recovery values being in the range of 98.3 to 106.2%. The efficient analytical performance of the proposed biosensor can be attributed to the effective immobilization of the PER enzyme in the modified CTN matrix, the significant contribution of the high conductivity of the ionic liquid, the facilitation of electron transfer promoted by gold nanoparticles, and the inherent catalytic ability of these materials.
doi_str_mv 10.1039/c1an15047b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896191064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896191064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9cdc1f2f0139dc2bb1922a50af1f4f25708402087f4624a7637d1f8de0cc4863</originalsourceid><addsrcrecordid>eNpF0M1KHjEUBuBQLPXTdtMLKNlIoTBtfmcmSxGrBaEb98OZ_GBKJonJjOgd9LKN_b7q6nDgOS-HF6HPlHynhKsfmkKkkohhfod2lPeik5KNR2hHCOEd66U4Rie1_mkrJZJ8QMeMSqqk4jv09yoFgyPElKGsXgdbsY8YIvYpeo2Dv9-8wfkOqsV1yzmV1Zp_BM8-5RSeFlsaXGAt_hFDzsHvwXpnsbEPNqS82Lji5NpNSXWB4l-iQbfgllFtrKl8RO8dhGo_HeYpuv15eXtx3d38vvp1cX7TaS7GtVPaaOqYI5Qro9k8U8UYSAKOOuGYHMgoCCPj4ETPBAw9Hwx1o7FEazH2_BR93cfmku43W9dp8VXbECDatNVpVD1VlPSiyW97qdvPtVg35eLb708TJdNL79Nb7w1_OcRu82LNK_1fdANnBwBVQ3AFovb1zQk28F4R_gxIfo0D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896191064</pqid></control><display><type>article</type><title>Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor</title><source>MEDLINE</source><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>BRONDANI, Daniela ; ZAPP, Eduardo ; CRUZ VIEIRA, Iolanda ; DUPONT, Jairton ; WEBER SCHEEREN, Carla</creator><creatorcontrib>BRONDANI, Daniela ; ZAPP, Eduardo ; CRUZ VIEIRA, Iolanda ; DUPONT, Jairton ; WEBER SCHEEREN, Carla</creatorcontrib><description>Gold nanoparticles dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Au-BMI·PF(6)) were supported in chitin (CTN) chemically crosslinked with glyoxal and epichlorohydrin to obtain a new supported ionic liquid phase (SILP) catalyst with high catalytic activity, and providing an excellent environment for enzyme immobilization. This modified biopolymer matrix (Au-BMI·PF(6)-CTN) was used as a support for the immobilization of the enzyme peroxidase (PER) from pea (Pisum sativum), and employed to develop a new biosensor for rosmarinic acid (RA) determination in pharmaceutical samples by square-wave voltammetry. In the presence of hydrogen peroxide, the PER catalyzes the oxidation of RA to the corresponding o-quinone, which is electrochemically reduced at a potential of +0.14 V vs. Ag/AgCl. Under optimized conditions, the resulting peak current increased linearly for the RA concentration range of 0.50 to 23.70 μM with a detection limit of 70.09 nM. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (15% decrease in response over 120 days). The method was successfully applied to the determination of RA content in pharmaceutical samples, with recovery values being in the range of 98.3 to 106.2%. The efficient analytical performance of the proposed biosensor can be attributed to the effective immobilization of the PER enzyme in the modified CTN matrix, the significant contribution of the high conductivity of the ionic liquid, the facilitation of electron transfer promoted by gold nanoparticles, and the inherent catalytic ability of these materials.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/c1an15047b</identifier><identifier>PMID: 21519593</identifier><identifier>CODEN: ANALAO</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Analytical chemistry ; Applied sciences ; Biocatalysis ; Biological and medical sciences ; Biopolymers - chemistry ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Catalysts ; Chemistry ; Chitin - chemistry ; Cinnamates - analysis ; Depsides - analysis ; Electrochemical methods ; Enzymes ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General, instrumentation ; Global environmental pollution ; Gold ; Gold - chemistry ; Hydrogen Peroxide - chemistry ; Immobilization ; Ionic liquids ; Ionic Liquids - chemistry ; Metal Nanoparticles - chemistry ; Methods. Procedures. Technologies ; Nanoparticles ; Oxidation-Reduction ; Peroxidase - chemistry ; Peroxidase - metabolism ; Pharmaceutical Preparations - chemistry ; Pisum sativum - enzymology ; Pollution ; Rosmarinic Acid ; Various methods and equipments</subject><ispartof>Analyst (London), 2011-06, Vol.136 (12), p.2495-2505</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-9cdc1f2f0139dc2bb1922a50af1f4f25708402087f4624a7637d1f8de0cc4863</citedby><cites>FETCH-LOGICAL-c348t-9cdc1f2f0139dc2bb1922a50af1f4f25708402087f4624a7637d1f8de0cc4863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2831,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24273690$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21519593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BRONDANI, Daniela</creatorcontrib><creatorcontrib>ZAPP, Eduardo</creatorcontrib><creatorcontrib>CRUZ VIEIRA, Iolanda</creatorcontrib><creatorcontrib>DUPONT, Jairton</creatorcontrib><creatorcontrib>WEBER SCHEEREN, Carla</creatorcontrib><title>Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>Gold nanoparticles dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Au-BMI·PF(6)) were supported in chitin (CTN) chemically crosslinked with glyoxal and epichlorohydrin to obtain a new supported ionic liquid phase (SILP) catalyst with high catalytic activity, and providing an excellent environment for enzyme immobilization. This modified biopolymer matrix (Au-BMI·PF(6)-CTN) was used as a support for the immobilization of the enzyme peroxidase (PER) from pea (Pisum sativum), and employed to develop a new biosensor for rosmarinic acid (RA) determination in pharmaceutical samples by square-wave voltammetry. In the presence of hydrogen peroxide, the PER catalyzes the oxidation of RA to the corresponding o-quinone, which is electrochemically reduced at a potential of +0.14 V vs. Ag/AgCl. Under optimized conditions, the resulting peak current increased linearly for the RA concentration range of 0.50 to 23.70 μM with a detection limit of 70.09 nM. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (15% decrease in response over 120 days). The method was successfully applied to the determination of RA content in pharmaceutical samples, with recovery values being in the range of 98.3 to 106.2%. The efficient analytical performance of the proposed biosensor can be attributed to the effective immobilization of the PER enzyme in the modified CTN matrix, the significant contribution of the high conductivity of the ionic liquid, the facilitation of electron transfer promoted by gold nanoparticles, and the inherent catalytic ability of these materials.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Biocatalysis</subject><subject>Biological and medical sciences</subject><subject>Biopolymers - chemistry</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chitin - chemistry</subject><subject>Cinnamates - analysis</subject><subject>Depsides - analysis</subject><subject>Electrochemical methods</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General, instrumentation</subject><subject>Global environmental pollution</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Immobilization</subject><subject>Ionic liquids</subject><subject>Ionic Liquids - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Methods. Procedures. Technologies</subject><subject>Nanoparticles</subject><subject>Oxidation-Reduction</subject><subject>Peroxidase - chemistry</subject><subject>Peroxidase - metabolism</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pisum sativum - enzymology</subject><subject>Pollution</subject><subject>Rosmarinic Acid</subject><subject>Various methods and equipments</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0M1KHjEUBuBQLPXTdtMLKNlIoTBtfmcmSxGrBaEb98OZ_GBKJonJjOgd9LKN_b7q6nDgOS-HF6HPlHynhKsfmkKkkohhfod2lPeik5KNR2hHCOEd66U4Rie1_mkrJZJ8QMeMSqqk4jv09yoFgyPElKGsXgdbsY8YIvYpeo2Dv9-8wfkOqsV1yzmV1Zp_BM8-5RSeFlsaXGAt_hFDzsHvwXpnsbEPNqS82Lji5NpNSXWB4l-iQbfgllFtrKl8RO8dhGo_HeYpuv15eXtx3d38vvp1cX7TaS7GtVPaaOqYI5Qro9k8U8UYSAKOOuGYHMgoCCPj4ETPBAw9Hwx1o7FEazH2_BR93cfmku43W9dp8VXbECDatNVpVD1VlPSiyW97qdvPtVg35eLb708TJdNL79Nb7w1_OcRu82LNK_1fdANnBwBVQ3AFovb1zQk28F4R_gxIfo0D</recordid><startdate>20110621</startdate><enddate>20110621</enddate><creator>BRONDANI, Daniela</creator><creator>ZAPP, Eduardo</creator><creator>CRUZ VIEIRA, Iolanda</creator><creator>DUPONT, Jairton</creator><creator>WEBER SCHEEREN, Carla</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110621</creationdate><title>Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor</title><author>BRONDANI, Daniela ; ZAPP, Eduardo ; CRUZ VIEIRA, Iolanda ; DUPONT, Jairton ; WEBER SCHEEREN, Carla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9cdc1f2f0139dc2bb1922a50af1f4f25708402087f4624a7637d1f8de0cc4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Biocatalysis</topic><topic>Biological and medical sciences</topic><topic>Biopolymers - chemistry</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chitin - chemistry</topic><topic>Cinnamates - analysis</topic><topic>Depsides - analysis</topic><topic>Electrochemical methods</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General, instrumentation</topic><topic>Global environmental pollution</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Immobilization</topic><topic>Ionic liquids</topic><topic>Ionic Liquids - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Methods. Procedures. Technologies</topic><topic>Nanoparticles</topic><topic>Oxidation-Reduction</topic><topic>Peroxidase - chemistry</topic><topic>Peroxidase - metabolism</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pisum sativum - enzymology</topic><topic>Pollution</topic><topic>Rosmarinic Acid</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRONDANI, Daniela</creatorcontrib><creatorcontrib>ZAPP, Eduardo</creatorcontrib><creatorcontrib>CRUZ VIEIRA, Iolanda</creatorcontrib><creatorcontrib>DUPONT, Jairton</creatorcontrib><creatorcontrib>WEBER SCHEEREN, Carla</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRONDANI, Daniela</au><au>ZAPP, Eduardo</au><au>CRUZ VIEIRA, Iolanda</au><au>DUPONT, Jairton</au><au>WEBER SCHEEREN, Carla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2011-06-21</date><risdate>2011</risdate><volume>136</volume><issue>12</issue><spage>2495</spage><epage>2505</epage><pages>2495-2505</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><coden>ANALAO</coden><abstract>Gold nanoparticles dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Au-BMI·PF(6)) were supported in chitin (CTN) chemically crosslinked with glyoxal and epichlorohydrin to obtain a new supported ionic liquid phase (SILP) catalyst with high catalytic activity, and providing an excellent environment for enzyme immobilization. This modified biopolymer matrix (Au-BMI·PF(6)-CTN) was used as a support for the immobilization of the enzyme peroxidase (PER) from pea (Pisum sativum), and employed to develop a new biosensor for rosmarinic acid (RA) determination in pharmaceutical samples by square-wave voltammetry. In the presence of hydrogen peroxide, the PER catalyzes the oxidation of RA to the corresponding o-quinone, which is electrochemically reduced at a potential of +0.14 V vs. Ag/AgCl. Under optimized conditions, the resulting peak current increased linearly for the RA concentration range of 0.50 to 23.70 μM with a detection limit of 70.09 nM. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (15% decrease in response over 120 days). The method was successfully applied to the determination of RA content in pharmaceutical samples, with recovery values being in the range of 98.3 to 106.2%. The efficient analytical performance of the proposed biosensor can be attributed to the effective immobilization of the PER enzyme in the modified CTN matrix, the significant contribution of the high conductivity of the ionic liquid, the facilitation of electron transfer promoted by gold nanoparticles, and the inherent catalytic ability of these materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>21519593</pmid><doi>10.1039/c1an15047b</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2011-06, Vol.136 (12), p.2495-2505
issn 0003-2654
1364-5528
language eng
recordid cdi_proquest_miscellaneous_896191064
source MEDLINE; Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Analytical chemistry
Applied sciences
Biocatalysis
Biological and medical sciences
Biopolymers - chemistry
Biosensing Techniques - methods
Biosensors
Biotechnology
Catalysts
Chemistry
Chitin - chemistry
Cinnamates - analysis
Depsides - analysis
Electrochemical methods
Enzymes
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - metabolism
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General, instrumentation
Global environmental pollution
Gold
Gold - chemistry
Hydrogen Peroxide - chemistry
Immobilization
Ionic liquids
Ionic Liquids - chemistry
Metal Nanoparticles - chemistry
Methods. Procedures. Technologies
Nanoparticles
Oxidation-Reduction
Peroxidase - chemistry
Peroxidase - metabolism
Pharmaceutical Preparations - chemistry
Pisum sativum - enzymology
Pollution
Rosmarinic Acid
Various methods and equipments
title Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20nanoparticles%20in%20an%20ionic%20liquid%20phase%20supported%20in%20a%20biopolymeric%20matrix%20applied%20in%20the%20development%20of%20a%20rosmarinic%20acid%20biosensor&rft.jtitle=Analyst%20(London)&rft.au=BRONDANI,%20Daniela&rft.date=2011-06-21&rft.volume=136&rft.issue=12&rft.spage=2495&rft.epage=2505&rft.pages=2495-2505&rft.issn=0003-2654&rft.eissn=1364-5528&rft.coden=ANALAO&rft_id=info:doi/10.1039/c1an15047b&rft_dat=%3Cproquest_cross%3E896191064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896191064&rft_id=info:pmid/21519593&rfr_iscdi=true