Emitter localization using clustering-based bearing association

A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2005-04, Vol.41 (2), p.525-536
1. Verfasser: Dogancay, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 536
container_issue 2
container_start_page 525
container_title IEEE transactions on aerospace and electronic systems
container_volume 41
creator Dogancay, K.
description A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel density estimate. A closed-form estimate of the emitter location is obtained from triangulation of the clustered bearings using a weighted version of the pseudolinear estimator. By way of simulation examples, the proposed closed-form estimator is shown to outperform the computationally demanding and divergence-prone maximum likelihood (ML) estimator at moderate TDOA noise levels.
doi_str_mv 10.1109/TAES.2005.1468745
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896190561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1468745</ieee_id><sourcerecordid>2361952811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4b2b5cbe18cd6b662472fbe52f82664a14e4eb7591024924880410cf164e002d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QLwsHvS0NZNNsslJSqkfUPBgPYcknZWUbbdudg_6683aguDB08zwPvP1EnIJdAJA9d1yOn-dMErFBLhUJRdHZARClLmWtDgmI0pB5ZoJOCVnMa5TyRUvRuR-vgldh21WN97W4ct2odlmfQzb98zXfUxSSnNnI64yh3aoMhtj48MPek5OKltHvDjEMXl7mC9nT_ni5fF5Nl3kvhCiy7ljTniHoPxKOikZL1nlULBKMSm5BY4cXSk0UMY140pRDtRXIDlSylbFmNzu5-7a5qPH2JlNiB7r2m6x6aNRWoKmQkIib_4lmaIFS4sSeP0HXDd9u01fGCU18HRBmSDYQ75tYmyxMrs2bGz7aYCawXkzOG8G583B-dRzte8JiPjLH9RvrXV95A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869140417</pqid></control><display><type>article</type><title>Emitter localization using clustering-based bearing association</title><source>IEEE Electronic Library (IEL)</source><creator>Dogancay, K.</creator><creatorcontrib>Dogancay, K.</creatorcontrib><description>A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel density estimate. A closed-form estimate of the emitter location is obtained from triangulation of the clustered bearings using a weighted version of the pseudolinear estimator. By way of simulation examples, the proposed closed-form estimator is shown to outperform the computationally demanding and divergence-prone maximum likelihood (ML) estimator at moderate TDOA noise levels.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2005.1468745</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotes ; Australia ; Bearing ; Closed-form solution ; Computational modeling ; Emitters (electron) ; Estimates ; Estimators ; Exact solutions ; Kernel ; Lakes ; Mathematical analysis ; Maximum likelihood estimation ; Noise level ; Nonlinear equations ; Position (location) ; Time difference of arrival ; Time measurement</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2005-04, Vol.41 (2), p.525-536</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4b2b5cbe18cd6b662472fbe52f82664a14e4eb7591024924880410cf164e002d3</citedby><cites>FETCH-LOGICAL-c355t-4b2b5cbe18cd6b662472fbe52f82664a14e4eb7591024924880410cf164e002d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1468745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1468745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dogancay, K.</creatorcontrib><title>Emitter localization using clustering-based bearing association</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel density estimate. A closed-form estimate of the emitter location is obtained from triangulation of the clustered bearings using a weighted version of the pseudolinear estimator. By way of simulation examples, the proposed closed-form estimator is shown to outperform the computationally demanding and divergence-prone maximum likelihood (ML) estimator at moderate TDOA noise levels.</description><subject>Asymptotes</subject><subject>Australia</subject><subject>Bearing</subject><subject>Closed-form solution</subject><subject>Computational modeling</subject><subject>Emitters (electron)</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Exact solutions</subject><subject>Kernel</subject><subject>Lakes</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood estimation</subject><subject>Noise level</subject><subject>Nonlinear equations</subject><subject>Position (location)</subject><subject>Time difference of arrival</subject><subject>Time measurement</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_QLwsHvS0NZNNsslJSqkfUPBgPYcknZWUbbdudg_6683aguDB08zwPvP1EnIJdAJA9d1yOn-dMErFBLhUJRdHZARClLmWtDgmI0pB5ZoJOCVnMa5TyRUvRuR-vgldh21WN97W4ct2odlmfQzb98zXfUxSSnNnI64yh3aoMhtj48MPek5OKltHvDjEMXl7mC9nT_ni5fF5Nl3kvhCiy7ljTniHoPxKOikZL1nlULBKMSm5BY4cXSk0UMY140pRDtRXIDlSylbFmNzu5-7a5qPH2JlNiB7r2m6x6aNRWoKmQkIib_4lmaIFS4sSeP0HXDd9u01fGCU18HRBmSDYQ75tYmyxMrs2bGz7aYCawXkzOG8G583B-dRzte8JiPjLH9RvrXV95A</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Dogancay, K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20050401</creationdate><title>Emitter localization using clustering-based bearing association</title><author>Dogancay, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4b2b5cbe18cd6b662472fbe52f82664a14e4eb7591024924880410cf164e002d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asymptotes</topic><topic>Australia</topic><topic>Bearing</topic><topic>Closed-form solution</topic><topic>Computational modeling</topic><topic>Emitters (electron)</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Exact solutions</topic><topic>Kernel</topic><topic>Lakes</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood estimation</topic><topic>Noise level</topic><topic>Nonlinear equations</topic><topic>Position (location)</topic><topic>Time difference of arrival</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dogancay, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dogancay, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emitter localization using clustering-based bearing association</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2005-04-01</date><risdate>2005</risdate><volume>41</volume><issue>2</issue><spage>525</spage><epage>536</epage><pages>525-536</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel density estimate. A closed-form estimate of the emitter location is obtained from triangulation of the clustered bearings using a weighted version of the pseudolinear estimator. By way of simulation examples, the proposed closed-form estimator is shown to outperform the computationally demanding and divergence-prone maximum likelihood (ML) estimator at moderate TDOA noise levels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2005.1468745</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2005-04, Vol.41 (2), p.525-536
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_miscellaneous_896190561
source IEEE Electronic Library (IEL)
subjects Asymptotes
Australia
Bearing
Closed-form solution
Computational modeling
Emitters (electron)
Estimates
Estimators
Exact solutions
Kernel
Lakes
Mathematical analysis
Maximum likelihood estimation
Noise level
Nonlinear equations
Position (location)
Time difference of arrival
Time measurement
title Emitter localization using clustering-based bearing association
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emitter%20localization%20using%20clustering-based%20bearing%20association&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Dogancay,%20K.&rft.date=2005-04-01&rft.volume=41&rft.issue=2&rft.spage=525&rft.epage=536&rft.pages=525-536&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2005.1468745&rft_dat=%3Cproquest_RIE%3E2361952811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869140417&rft_id=info:pmid/&rft_ieee_id=1468745&rfr_iscdi=true