Emitter localization using clustering-based bearing association
A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel de...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2005-04, Vol.41 (2), p.525-536 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 536 |
---|---|
container_issue | 2 |
container_start_page | 525 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 41 |
creator | Dogancay, K. |
description | A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel density estimate. A closed-form estimate of the emitter location is obtained from triangulation of the clustered bearings using a weighted version of the pseudolinear estimator. By way of simulation examples, the proposed closed-form estimator is shown to outperform the computationally demanding and divergence-prone maximum likelihood (ML) estimator at moderate TDOA noise levels. |
doi_str_mv | 10.1109/TAES.2005.1468745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896190561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1468745</ieee_id><sourcerecordid>2361952811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4b2b5cbe18cd6b662472fbe52f82664a14e4eb7591024924880410cf164e002d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QLwsHvS0NZNNsslJSqkfUPBgPYcknZWUbbdudg_6683aguDB08zwPvP1EnIJdAJA9d1yOn-dMErFBLhUJRdHZARClLmWtDgmI0pB5ZoJOCVnMa5TyRUvRuR-vgldh21WN97W4ct2odlmfQzb98zXfUxSSnNnI64yh3aoMhtj48MPek5OKltHvDjEMXl7mC9nT_ni5fF5Nl3kvhCiy7ljTniHoPxKOikZL1nlULBKMSm5BY4cXSk0UMY140pRDtRXIDlSylbFmNzu5-7a5qPH2JlNiB7r2m6x6aNRWoKmQkIib_4lmaIFS4sSeP0HXDd9u01fGCU18HRBmSDYQ75tYmyxMrs2bGz7aYCawXkzOG8G583B-dRzte8JiPjLH9RvrXV95A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869140417</pqid></control><display><type>article</type><title>Emitter localization using clustering-based bearing association</title><source>IEEE Electronic Library (IEL)</source><creator>Dogancay, K.</creator><creatorcontrib>Dogancay, K.</creatorcontrib><description>A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel density estimate. A closed-form estimate of the emitter location is obtained from triangulation of the clustered bearings using a weighted version of the pseudolinear estimator. By way of simulation examples, the proposed closed-form estimator is shown to outperform the computationally demanding and divergence-prone maximum likelihood (ML) estimator at moderate TDOA noise levels.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2005.1468745</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotes ; Australia ; Bearing ; Closed-form solution ; Computational modeling ; Emitters (electron) ; Estimates ; Estimators ; Exact solutions ; Kernel ; Lakes ; Mathematical analysis ; Maximum likelihood estimation ; Noise level ; Nonlinear equations ; Position (location) ; Time difference of arrival ; Time measurement</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2005-04, Vol.41 (2), p.525-536</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4b2b5cbe18cd6b662472fbe52f82664a14e4eb7591024924880410cf164e002d3</citedby><cites>FETCH-LOGICAL-c355t-4b2b5cbe18cd6b662472fbe52f82664a14e4eb7591024924880410cf164e002d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1468745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1468745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dogancay, K.</creatorcontrib><title>Emitter localization using clustering-based bearing association</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel density estimate. A closed-form estimate of the emitter location is obtained from triangulation of the clustered bearings using a weighted version of the pseudolinear estimator. By way of simulation examples, the proposed closed-form estimator is shown to outperform the computationally demanding and divergence-prone maximum likelihood (ML) estimator at moderate TDOA noise levels.</description><subject>Asymptotes</subject><subject>Australia</subject><subject>Bearing</subject><subject>Closed-form solution</subject><subject>Computational modeling</subject><subject>Emitters (electron)</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Exact solutions</subject><subject>Kernel</subject><subject>Lakes</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood estimation</subject><subject>Noise level</subject><subject>Nonlinear equations</subject><subject>Position (location)</subject><subject>Time difference of arrival</subject><subject>Time measurement</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_QLwsHvS0NZNNsslJSqkfUPBgPYcknZWUbbdudg_6683aguDB08zwPvP1EnIJdAJA9d1yOn-dMErFBLhUJRdHZARClLmWtDgmI0pB5ZoJOCVnMa5TyRUvRuR-vgldh21WN97W4ct2odlmfQzb98zXfUxSSnNnI64yh3aoMhtj48MPek5OKltHvDjEMXl7mC9nT_ni5fF5Nl3kvhCiy7ljTniHoPxKOikZL1nlULBKMSm5BY4cXSk0UMY140pRDtRXIDlSylbFmNzu5-7a5qPH2JlNiB7r2m6x6aNRWoKmQkIib_4lmaIFS4sSeP0HXDd9u01fGCU18HRBmSDYQ75tYmyxMrs2bGz7aYCawXkzOG8G583B-dRzte8JiPjLH9RvrXV95A</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Dogancay, K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20050401</creationdate><title>Emitter localization using clustering-based bearing association</title><author>Dogancay, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4b2b5cbe18cd6b662472fbe52f82664a14e4eb7591024924880410cf164e002d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asymptotes</topic><topic>Australia</topic><topic>Bearing</topic><topic>Closed-form solution</topic><topic>Computational modeling</topic><topic>Emitters (electron)</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Exact solutions</topic><topic>Kernel</topic><topic>Lakes</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood estimation</topic><topic>Noise level</topic><topic>Nonlinear equations</topic><topic>Position (location)</topic><topic>Time difference of arrival</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dogancay, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dogancay, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emitter localization using clustering-based bearing association</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2005-04-01</date><risdate>2005</risdate><volume>41</volume><issue>2</issue><spage>525</spage><epage>536</epage><pages>525-536</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>A closed-form emitter location estimator using time difference of arrival (TDOA) measurements is developed based on triangulation of hyperbolic asymptotes. The problem of associating the asymptotes with the emitter is solved by clustering the bearing angles of the linear asymptotes using a kernel density estimate. A closed-form estimate of the emitter location is obtained from triangulation of the clustered bearings using a weighted version of the pseudolinear estimator. By way of simulation examples, the proposed closed-form estimator is shown to outperform the computationally demanding and divergence-prone maximum likelihood (ML) estimator at moderate TDOA noise levels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2005.1468745</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2005-04, Vol.41 (2), p.525-536 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_miscellaneous_896190561 |
source | IEEE Electronic Library (IEL) |
subjects | Asymptotes Australia Bearing Closed-form solution Computational modeling Emitters (electron) Estimates Estimators Exact solutions Kernel Lakes Mathematical analysis Maximum likelihood estimation Noise level Nonlinear equations Position (location) Time difference of arrival Time measurement |
title | Emitter localization using clustering-based bearing association |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emitter%20localization%20using%20clustering-based%20bearing%20association&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Dogancay,%20K.&rft.date=2005-04-01&rft.volume=41&rft.issue=2&rft.spage=525&rft.epage=536&rft.pages=525-536&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2005.1468745&rft_dat=%3Cproquest_RIE%3E2361952811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869140417&rft_id=info:pmid/&rft_ieee_id=1468745&rfr_iscdi=true |