Three-dimensional modelling and simulation of magnetorheological fluids

A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framew...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2010-12, Vol.84 (11), p.1273-1302
Hauptverfasser: Han, K., Feng, Y. T., Owen, D. R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1302
container_issue 11
container_start_page 1273
container_title International journal for numerical methods in engineering
container_volume 84
creator Han, K.
Feng, Y. T.
Owen, D. R. J.
description A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framework for the numerical study of MR fluids, in which a two‐stage modelling and simulation strategy is proposed to achieve reasonable accuracy and computational efficiency. At the first stage for simulating the particle chain formation, the particle dynamics plays a major role whereas the hydrodynamics of the fluid flow is of secondary importance. Thus an MR fluid is modelled in the context of the discrete element method and the simple Stokes formula is adopted for the hydrodynamic interaction. At the second stage, the formulated particle chains are applied as the initial configuration for simulating the rheological properties of the fluid under different shear loading conditions. A combined lattice Boltzmann and discrete element approach is employed to fully resolve the fluid field and the hydrodynamic interactions between the fluid and the particles. Some relevant magnetic models are comprehensively reviewed and the mutual dipole model is employed in this work to account for the magnetic interactions between the particles. The proposed solution procedure is illustrated via a set of numerical simulations for a representative volume element of an MR fluid. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.2940
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896186549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896186549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4020-b5cddf20dcb63175c53238f2e9fb47bc01321d915591e4f92eecab8be5916e743</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYL-AizEd1MzXVmstSiVagVpOIyZDInbXRmUpMW7dsbaenOVTicj5-TH6ELgocEY3rTdzCkkuMDNCBYljmmuDxEg7SSuZAVOUYnMX5gTIjAbIDGs0UAyBvXQR-d73Wbdb6BtnX9PNN9k0XXrVu9SqvM26zT8x5WPizAt37uTOK2XbsmnqEjq9sI57v3FL093M9Gj_nkZfw0up3khqdL8lqYprEUN6YuGCmFEYyyylKQtuZlbTBhlDSSCCEJcCspgNF1VUOaCyg5O0VX29xl8F9riCvVuWjSvboHv46qkgWpCsFlktdbaYKPMYBVy-A6HTaKYPVXlUpVqb-qEr3cheqYvmSD7o2Le08Z50Rimly-dd-uhc2_eWr6fL_L3XkXV_Cz9zp8qqJkpVDv07HC41dOZuJOCfYLDNWGpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896186549</pqid></control><display><type>article</type><title>Three-dimensional modelling and simulation of magnetorheological fluids</title><source>Wiley Online Library Journals【Remote access available】</source><creator>Han, K. ; Feng, Y. T. ; Owen, D. R. J.</creator><creatorcontrib>Han, K. ; Feng, Y. T. ; Owen, D. R. J.</creatorcontrib><description>A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framework for the numerical study of MR fluids, in which a two‐stage modelling and simulation strategy is proposed to achieve reasonable accuracy and computational efficiency. At the first stage for simulating the particle chain formation, the particle dynamics plays a major role whereas the hydrodynamics of the fluid flow is of secondary importance. Thus an MR fluid is modelled in the context of the discrete element method and the simple Stokes formula is adopted for the hydrodynamic interaction. At the second stage, the formulated particle chains are applied as the initial configuration for simulating the rheological properties of the fluid under different shear loading conditions. A combined lattice Boltzmann and discrete element approach is employed to fully resolve the fluid field and the hydrodynamic interactions between the fluid and the particles. Some relevant magnetic models are comprehensively reviewed and the mutual dipole model is employed in this work to account for the magnetic interactions between the particles. The proposed solution procedure is illustrated via a set of numerical simulations for a representative volume element of an MR fluid. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2940</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Chains ; Computational fluid dynamics ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; discrete element method ; Electro- and magnetorheological fluids ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluids ; Fundamental areas of phenomenology (including applications) ; General theory ; homogenization ; Hydrodynamics ; lattice Boltzmann method ; magnetic interaction models ; Magnetorheological fluids ; Material types ; Mathematical models ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; particle dynamics ; Physics ; rheological properties ; Rheology</subject><ispartof>International journal for numerical methods in engineering, 2010-12, Vol.84 (11), p.1273-1302</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4020-b5cddf20dcb63175c53238f2e9fb47bc01321d915591e4f92eecab8be5916e743</citedby><cites>FETCH-LOGICAL-c4020-b5cddf20dcb63175c53238f2e9fb47bc01321d915591e4f92eecab8be5916e743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2940$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2940$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23441902$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, K.</creatorcontrib><creatorcontrib>Feng, Y. T.</creatorcontrib><creatorcontrib>Owen, D. R. J.</creatorcontrib><title>Three-dimensional modelling and simulation of magnetorheological fluids</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framework for the numerical study of MR fluids, in which a two‐stage modelling and simulation strategy is proposed to achieve reasonable accuracy and computational efficiency. At the first stage for simulating the particle chain formation, the particle dynamics plays a major role whereas the hydrodynamics of the fluid flow is of secondary importance. Thus an MR fluid is modelled in the context of the discrete element method and the simple Stokes formula is adopted for the hydrodynamic interaction. At the second stage, the formulated particle chains are applied as the initial configuration for simulating the rheological properties of the fluid under different shear loading conditions. A combined lattice Boltzmann and discrete element approach is employed to fully resolve the fluid field and the hydrodynamic interactions between the fluid and the particles. Some relevant magnetic models are comprehensively reviewed and the mutual dipole model is employed in this work to account for the magnetic interactions between the particles. The proposed solution procedure is illustrated via a set of numerical simulations for a representative volume element of an MR fluid. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Chains</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>discrete element method</subject><subject>Electro- and magnetorheological fluids</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>homogenization</subject><subject>Hydrodynamics</subject><subject>lattice Boltzmann method</subject><subject>magnetic interaction models</subject><subject>Magnetorheological fluids</subject><subject>Material types</subject><subject>Mathematical models</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>particle dynamics</subject><subject>Physics</subject><subject>rheological properties</subject><subject>Rheology</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYL-AizEd1MzXVmstSiVagVpOIyZDInbXRmUpMW7dsbaenOVTicj5-TH6ELgocEY3rTdzCkkuMDNCBYljmmuDxEg7SSuZAVOUYnMX5gTIjAbIDGs0UAyBvXQR-d73Wbdb6BtnX9PNN9k0XXrVu9SqvM26zT8x5WPizAt37uTOK2XbsmnqEjq9sI57v3FL093M9Gj_nkZfw0up3khqdL8lqYprEUN6YuGCmFEYyyylKQtuZlbTBhlDSSCCEJcCspgNF1VUOaCyg5O0VX29xl8F9riCvVuWjSvboHv46qkgWpCsFlktdbaYKPMYBVy-A6HTaKYPVXlUpVqb-qEr3cheqYvmSD7o2Le08Z50Rimly-dd-uhc2_eWr6fL_L3XkXV_Cz9zp8qqJkpVDv07HC41dOZuJOCfYLDNWGpg</recordid><startdate>20101210</startdate><enddate>20101210</enddate><creator>Han, K.</creator><creator>Feng, Y. T.</creator><creator>Owen, D. R. J.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101210</creationdate><title>Three-dimensional modelling and simulation of magnetorheological fluids</title><author>Han, K. ; Feng, Y. T. ; Owen, D. R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4020-b5cddf20dcb63175c53238f2e9fb47bc01321d915591e4f92eecab8be5916e743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chains</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>discrete element method</topic><topic>Electro- and magnetorheological fluids</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>homogenization</topic><topic>Hydrodynamics</topic><topic>lattice Boltzmann method</topic><topic>magnetic interaction models</topic><topic>Magnetorheological fluids</topic><topic>Material types</topic><topic>Mathematical models</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>particle dynamics</topic><topic>Physics</topic><topic>rheological properties</topic><topic>Rheology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, K.</creatorcontrib><creatorcontrib>Feng, Y. T.</creatorcontrib><creatorcontrib>Owen, D. R. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, K.</au><au>Feng, Y. T.</au><au>Owen, D. R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional modelling and simulation of magnetorheological fluids</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2010-12-10</date><risdate>2010</risdate><volume>84</volume><issue>11</issue><spage>1273</spage><epage>1302</epage><pages>1273-1302</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framework for the numerical study of MR fluids, in which a two‐stage modelling and simulation strategy is proposed to achieve reasonable accuracy and computational efficiency. At the first stage for simulating the particle chain formation, the particle dynamics plays a major role whereas the hydrodynamics of the fluid flow is of secondary importance. Thus an MR fluid is modelled in the context of the discrete element method and the simple Stokes formula is adopted for the hydrodynamic interaction. At the second stage, the formulated particle chains are applied as the initial configuration for simulating the rheological properties of the fluid under different shear loading conditions. A combined lattice Boltzmann and discrete element approach is employed to fully resolve the fluid field and the hydrodynamic interactions between the fluid and the particles. Some relevant magnetic models are comprehensively reviewed and the mutual dipole model is employed in this work to account for the magnetic interactions between the particles. The proposed solution procedure is illustrated via a set of numerical simulations for a representative volume element of an MR fluid. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.2940</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2010-12, Vol.84 (11), p.1273-1302
issn 0029-5981
1097-0207
1097-0207
language eng
recordid cdi_proquest_miscellaneous_896186549
source Wiley Online Library Journals【Remote access available】
subjects Chains
Computational fluid dynamics
Computer simulation
Cross-disciplinary physics: materials science
rheology
discrete element method
Electro- and magnetorheological fluids
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluids
Fundamental areas of phenomenology (including applications)
General theory
homogenization
Hydrodynamics
lattice Boltzmann method
magnetic interaction models
Magnetorheological fluids
Material types
Mathematical models
Multiphase and particle-laden flows
Nonhomogeneous flows
particle dynamics
Physics
rheological properties
Rheology
title Three-dimensional modelling and simulation of magnetorheological fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20modelling%20and%20simulation%20of%20magnetorheological%20fluids&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Han,%20K.&rft.date=2010-12-10&rft.volume=84&rft.issue=11&rft.spage=1273&rft.epage=1302&rft.pages=1273-1302&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2940&rft_dat=%3Cproquest_cross%3E896186549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896186549&rft_id=info:pmid/&rfr_iscdi=true