Three-dimensional modelling and simulation of magnetorheological fluids
A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framew...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2010-12, Vol.84 (11), p.1273-1302 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1302 |
---|---|
container_issue | 11 |
container_start_page | 1273 |
container_title | International journal for numerical methods in engineering |
container_volume | 84 |
creator | Han, K. Feng, Y. T. Owen, D. R. J. |
description | A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framework for the numerical study of MR fluids, in which a two‐stage modelling and simulation strategy is proposed to achieve reasonable accuracy and computational efficiency. At the first stage for simulating the particle chain formation, the particle dynamics plays a major role whereas the hydrodynamics of the fluid flow is of secondary importance. Thus an MR fluid is modelled in the context of the discrete element method and the simple Stokes formula is adopted for the hydrodynamic interaction. At the second stage, the formulated particle chains are applied as the initial configuration for simulating the rheological properties of the fluid under different shear loading conditions. A combined lattice Boltzmann and discrete element approach is employed to fully resolve the fluid field and the hydrodynamic interactions between the fluid and the particles. Some relevant magnetic models are comprehensively reviewed and the mutual dipole model is employed in this work to account for the magnetic interactions between the particles. The proposed solution procedure is illustrated via a set of numerical simulations for a representative volume element of an MR fluid. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.2940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896186549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896186549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4020-b5cddf20dcb63175c53238f2e9fb47bc01321d915591e4f92eecab8be5916e743</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYL-AizEd1MzXVmstSiVagVpOIyZDInbXRmUpMW7dsbaenOVTicj5-TH6ELgocEY3rTdzCkkuMDNCBYljmmuDxEg7SSuZAVOUYnMX5gTIjAbIDGs0UAyBvXQR-d73Wbdb6BtnX9PNN9k0XXrVu9SqvM26zT8x5WPizAt37uTOK2XbsmnqEjq9sI57v3FL093M9Gj_nkZfw0up3khqdL8lqYprEUN6YuGCmFEYyyylKQtuZlbTBhlDSSCCEJcCspgNF1VUOaCyg5O0VX29xl8F9riCvVuWjSvboHv46qkgWpCsFlktdbaYKPMYBVy-A6HTaKYPVXlUpVqb-qEr3cheqYvmSD7o2Le08Z50Rimly-dd-uhc2_eWr6fL_L3XkXV_Cz9zp8qqJkpVDv07HC41dOZuJOCfYLDNWGpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896186549</pqid></control><display><type>article</type><title>Three-dimensional modelling and simulation of magnetorheological fluids</title><source>Wiley Online Library Journals【Remote access available】</source><creator>Han, K. ; Feng, Y. T. ; Owen, D. R. J.</creator><creatorcontrib>Han, K. ; Feng, Y. T. ; Owen, D. R. J.</creatorcontrib><description>A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framework for the numerical study of MR fluids, in which a two‐stage modelling and simulation strategy is proposed to achieve reasonable accuracy and computational efficiency. At the first stage for simulating the particle chain formation, the particle dynamics plays a major role whereas the hydrodynamics of the fluid flow is of secondary importance. Thus an MR fluid is modelled in the context of the discrete element method and the simple Stokes formula is adopted for the hydrodynamic interaction. At the second stage, the formulated particle chains are applied as the initial configuration for simulating the rheological properties of the fluid under different shear loading conditions. A combined lattice Boltzmann and discrete element approach is employed to fully resolve the fluid field and the hydrodynamic interactions between the fluid and the particles. Some relevant magnetic models are comprehensively reviewed and the mutual dipole model is employed in this work to account for the magnetic interactions between the particles. The proposed solution procedure is illustrated via a set of numerical simulations for a representative volume element of an MR fluid. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2940</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Chains ; Computational fluid dynamics ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; discrete element method ; Electro- and magnetorheological fluids ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluids ; Fundamental areas of phenomenology (including applications) ; General theory ; homogenization ; Hydrodynamics ; lattice Boltzmann method ; magnetic interaction models ; Magnetorheological fluids ; Material types ; Mathematical models ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; particle dynamics ; Physics ; rheological properties ; Rheology</subject><ispartof>International journal for numerical methods in engineering, 2010-12, Vol.84 (11), p.1273-1302</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4020-b5cddf20dcb63175c53238f2e9fb47bc01321d915591e4f92eecab8be5916e743</citedby><cites>FETCH-LOGICAL-c4020-b5cddf20dcb63175c53238f2e9fb47bc01321d915591e4f92eecab8be5916e743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2940$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2940$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23441902$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, K.</creatorcontrib><creatorcontrib>Feng, Y. T.</creatorcontrib><creatorcontrib>Owen, D. R. J.</creatorcontrib><title>Three-dimensional modelling and simulation of magnetorheological fluids</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framework for the numerical study of MR fluids, in which a two‐stage modelling and simulation strategy is proposed to achieve reasonable accuracy and computational efficiency. At the first stage for simulating the particle chain formation, the particle dynamics plays a major role whereas the hydrodynamics of the fluid flow is of secondary importance. Thus an MR fluid is modelled in the context of the discrete element method and the simple Stokes formula is adopted for the hydrodynamic interaction. At the second stage, the formulated particle chains are applied as the initial configuration for simulating the rheological properties of the fluid under different shear loading conditions. A combined lattice Boltzmann and discrete element approach is employed to fully resolve the fluid field and the hydrodynamic interactions between the fluid and the particles. Some relevant magnetic models are comprehensively reviewed and the mutual dipole model is employed in this work to account for the magnetic interactions between the particles. The proposed solution procedure is illustrated via a set of numerical simulations for a representative volume element of an MR fluid. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Chains</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>discrete element method</subject><subject>Electro- and magnetorheological fluids</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>homogenization</subject><subject>Hydrodynamics</subject><subject>lattice Boltzmann method</subject><subject>magnetic interaction models</subject><subject>Magnetorheological fluids</subject><subject>Material types</subject><subject>Mathematical models</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>particle dynamics</subject><subject>Physics</subject><subject>rheological properties</subject><subject>Rheology</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYL-AizEd1MzXVmstSiVagVpOIyZDInbXRmUpMW7dsbaenOVTicj5-TH6ELgocEY3rTdzCkkuMDNCBYljmmuDxEg7SSuZAVOUYnMX5gTIjAbIDGs0UAyBvXQR-d73Wbdb6BtnX9PNN9k0XXrVu9SqvM26zT8x5WPizAt37uTOK2XbsmnqEjq9sI57v3FL093M9Gj_nkZfw0up3khqdL8lqYprEUN6YuGCmFEYyyylKQtuZlbTBhlDSSCCEJcCspgNF1VUOaCyg5O0VX29xl8F9riCvVuWjSvboHv46qkgWpCsFlktdbaYKPMYBVy-A6HTaKYPVXlUpVqb-qEr3cheqYvmSD7o2Le08Z50Rimly-dd-uhc2_eWr6fL_L3XkXV_Cz9zp8qqJkpVDv07HC41dOZuJOCfYLDNWGpg</recordid><startdate>20101210</startdate><enddate>20101210</enddate><creator>Han, K.</creator><creator>Feng, Y. T.</creator><creator>Owen, D. R. J.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101210</creationdate><title>Three-dimensional modelling and simulation of magnetorheological fluids</title><author>Han, K. ; Feng, Y. T. ; Owen, D. R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4020-b5cddf20dcb63175c53238f2e9fb47bc01321d915591e4f92eecab8be5916e743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chains</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>discrete element method</topic><topic>Electro- and magnetorheological fluids</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>homogenization</topic><topic>Hydrodynamics</topic><topic>lattice Boltzmann method</topic><topic>magnetic interaction models</topic><topic>Magnetorheological fluids</topic><topic>Material types</topic><topic>Mathematical models</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>particle dynamics</topic><topic>Physics</topic><topic>rheological properties</topic><topic>Rheology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, K.</creatorcontrib><creatorcontrib>Feng, Y. T.</creatorcontrib><creatorcontrib>Owen, D. R. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, K.</au><au>Feng, Y. T.</au><au>Owen, D. R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional modelling and simulation of magnetorheological fluids</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2010-12-10</date><risdate>2010</risdate><volume>84</volume><issue>11</issue><spage>1273</spage><epage>1302</epage><pages>1273-1302</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>A magnetorheological fluid (MR fluid) is a type of smart fluid composed of micrometer‐sized magnetizable particles suspended in a carrier fluid. The rheological properties of an MR fluid can be greatly altered upon application of an external magnetic field. This paper presents a computational framework for the numerical study of MR fluids, in which a two‐stage modelling and simulation strategy is proposed to achieve reasonable accuracy and computational efficiency. At the first stage for simulating the particle chain formation, the particle dynamics plays a major role whereas the hydrodynamics of the fluid flow is of secondary importance. Thus an MR fluid is modelled in the context of the discrete element method and the simple Stokes formula is adopted for the hydrodynamic interaction. At the second stage, the formulated particle chains are applied as the initial configuration for simulating the rheological properties of the fluid under different shear loading conditions. A combined lattice Boltzmann and discrete element approach is employed to fully resolve the fluid field and the hydrodynamic interactions between the fluid and the particles. Some relevant magnetic models are comprehensively reviewed and the mutual dipole model is employed in this work to account for the magnetic interactions between the particles. The proposed solution procedure is illustrated via a set of numerical simulations for a representative volume element of an MR fluid. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.2940</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2010-12, Vol.84 (11), p.1273-1302 |
issn | 0029-5981 1097-0207 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_896186549 |
source | Wiley Online Library Journals【Remote access available】 |
subjects | Chains Computational fluid dynamics Computer simulation Cross-disciplinary physics: materials science rheology discrete element method Electro- and magnetorheological fluids Exact sciences and technology Fluid dynamics Fluid flow Fluids Fundamental areas of phenomenology (including applications) General theory homogenization Hydrodynamics lattice Boltzmann method magnetic interaction models Magnetorheological fluids Material types Mathematical models Multiphase and particle-laden flows Nonhomogeneous flows particle dynamics Physics rheological properties Rheology |
title | Three-dimensional modelling and simulation of magnetorheological fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20modelling%20and%20simulation%20of%20magnetorheological%20fluids&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Han,%20K.&rft.date=2010-12-10&rft.volume=84&rft.issue=11&rft.spage=1273&rft.epage=1302&rft.pages=1273-1302&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2940&rft_dat=%3Cproquest_cross%3E896186549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896186549&rft_id=info:pmid/&rfr_iscdi=true |