Quantitative benchmark computations of two-dimensional bubble dynamics

Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2009-08, Vol.60 (11), p.1259-1288
Hauptverfasser: Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1288
container_issue 11
container_start_page 1259
container_title International journal for numerical methods in fluids
container_volume 60
creator Hysing, S.
Turek, S.
Kuzmin, D.
Parolini, N.
Burman, E.
Ganesan, S.
Tobiska, L.
description Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach. The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence. Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.1934
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896186386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770278325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4984-d24bea1796740584e1e5616b23feb88208f10e49772a8d93d73b37d492439f1c3</originalsourceid><addsrcrecordid>eNp9kctKAzEUQIMoWKvgJ8xGdDM1r5kkS622CkUp9bULmUyC0XnUyYy1f29KB10pXLhwOZzFuQAcIzhCEOJzW-QjJAjdAQMEBYshSckuGEDMUIyhQPvgwPs3CKHAnAzAZN6pqnWtat2niTJT6ddSNe-Rrstlt7nWlY9qG7WrOs5daSofLqqIsi7LChPl60qVTvtDsGdV4c1Rv4fgcXL9ML6JZ_fT2_HFLNZUcBrnmGZGISZSRmHCqUEmSVGaYWJNxjmG3CJoqGAMK54LkjOSEZZTgSkRFmkyBKdb77KpPzrjW1k6r01RqMrUnZdcpIinJMwQnP1LIsZCE05w8ovqpva-MVYuGxcqrCWCchNVhqhyEzWgJ71Vea0K26hKO__D41CYMQIDF2-5lSvM-k-fnMyuem_PO9-arx8-fEKmjLBEPt9N5eXiBS_mcyKfyDdeaJNV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770278325</pqid></control><display><type>article</type><title>Quantitative benchmark computations of two-dimensional bubble dynamics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hysing, S. ; Turek, S. ; Kuzmin, D. ; Parolini, N. ; Burman, E. ; Ganesan, S. ; Tobiska, L.</creator><creatorcontrib>Hysing, S. ; Turek, S. ; Kuzmin, D. ; Parolini, N. ; Burman, E. ; Ganesan, S. ; Tobiska, L.</creatorcontrib><description>Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach. The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence. Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>ISSN: 1097-0363</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.1934</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>ALE ; Benchmarking ; Bubbles ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Drops and bubbles ; Exact sciences and technology ; finite-element method ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; level set method ; Mathematical models ; Monitors ; multiphase flow ; Nonhomogeneous flows ; Numerical analysis ; numerical simulation ; Physics ; rising bubble ; Two dimensional</subject><ispartof>International journal for numerical methods in fluids, 2009-08, Vol.60 (11), p.1259-1288</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4984-d24bea1796740584e1e5616b23feb88208f10e49772a8d93d73b37d492439f1c3</citedby><cites>FETCH-LOGICAL-c4984-d24bea1796740584e1e5616b23feb88208f10e49772a8d93d73b37d492439f1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.1934$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.1934$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22097730$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hysing, S.</creatorcontrib><creatorcontrib>Turek, S.</creatorcontrib><creatorcontrib>Kuzmin, D.</creatorcontrib><creatorcontrib>Parolini, N.</creatorcontrib><creatorcontrib>Burman, E.</creatorcontrib><creatorcontrib>Ganesan, S.</creatorcontrib><creatorcontrib>Tobiska, L.</creatorcontrib><title>Quantitative benchmark computations of two-dimensional bubble dynamics</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach. The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence. Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>ALE</subject><subject>Benchmarking</subject><subject>Bubbles</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Drops and bubbles</subject><subject>Exact sciences and technology</subject><subject>finite-element method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>level set method</subject><subject>Mathematical models</subject><subject>Monitors</subject><subject>multiphase flow</subject><subject>Nonhomogeneous flows</subject><subject>Numerical analysis</subject><subject>numerical simulation</subject><subject>Physics</subject><subject>rising bubble</subject><subject>Two dimensional</subject><issn>0271-2091</issn><issn>1097-0363</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUQIMoWKvgJ8xGdDM1r5kkS622CkUp9bULmUyC0XnUyYy1f29KB10pXLhwOZzFuQAcIzhCEOJzW-QjJAjdAQMEBYshSckuGEDMUIyhQPvgwPs3CKHAnAzAZN6pqnWtat2niTJT6ddSNe-Rrstlt7nWlY9qG7WrOs5daSofLqqIsi7LChPl60qVTvtDsGdV4c1Rv4fgcXL9ML6JZ_fT2_HFLNZUcBrnmGZGISZSRmHCqUEmSVGaYWJNxjmG3CJoqGAMK54LkjOSEZZTgSkRFmkyBKdb77KpPzrjW1k6r01RqMrUnZdcpIinJMwQnP1LIsZCE05w8ovqpva-MVYuGxcqrCWCchNVhqhyEzWgJ71Vea0K26hKO__D41CYMQIDF2-5lSvM-k-fnMyuem_PO9-arx8-fEKmjLBEPt9N5eXiBS_mcyKfyDdeaJNV</recordid><startdate>20090820</startdate><enddate>20090820</enddate><creator>Hysing, S.</creator><creator>Turek, S.</creator><creator>Kuzmin, D.</creator><creator>Parolini, N.</creator><creator>Burman, E.</creator><creator>Ganesan, S.</creator><creator>Tobiska, L.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090820</creationdate><title>Quantitative benchmark computations of two-dimensional bubble dynamics</title><author>Hysing, S. ; Turek, S. ; Kuzmin, D. ; Parolini, N. ; Burman, E. ; Ganesan, S. ; Tobiska, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4984-d24bea1796740584e1e5616b23feb88208f10e49772a8d93d73b37d492439f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ALE</topic><topic>Benchmarking</topic><topic>Bubbles</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Drops and bubbles</topic><topic>Exact sciences and technology</topic><topic>finite-element method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>level set method</topic><topic>Mathematical models</topic><topic>Monitors</topic><topic>multiphase flow</topic><topic>Nonhomogeneous flows</topic><topic>Numerical analysis</topic><topic>numerical simulation</topic><topic>Physics</topic><topic>rising bubble</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hysing, S.</creatorcontrib><creatorcontrib>Turek, S.</creatorcontrib><creatorcontrib>Kuzmin, D.</creatorcontrib><creatorcontrib>Parolini, N.</creatorcontrib><creatorcontrib>Burman, E.</creatorcontrib><creatorcontrib>Ganesan, S.</creatorcontrib><creatorcontrib>Tobiska, L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hysing, S.</au><au>Turek, S.</au><au>Kuzmin, D.</au><au>Parolini, N.</au><au>Burman, E.</au><au>Ganesan, S.</au><au>Tobiska, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative benchmark computations of two-dimensional bubble dynamics</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2009-08-20</date><risdate>2009</risdate><volume>60</volume><issue>11</issue><spage>1259</spage><epage>1288</epage><pages>1259-1288</pages><issn>0271-2091</issn><issn>1097-0363</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach. The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence. Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.1934</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2009-08, Vol.60 (11), p.1259-1288
issn 0271-2091
1097-0363
1097-0363
language eng
recordid cdi_proquest_miscellaneous_896186386
source Wiley Online Library Journals Frontfile Complete
subjects ALE
Benchmarking
Bubbles
Computational fluid dynamics
Computational methods in fluid dynamics
Drops and bubbles
Exact sciences and technology
finite-element method
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
level set method
Mathematical models
Monitors
multiphase flow
Nonhomogeneous flows
Numerical analysis
numerical simulation
Physics
rising bubble
Two dimensional
title Quantitative benchmark computations of two-dimensional bubble dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20benchmark%20computations%20of%20two-dimensional%20bubble%20dynamics&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Hysing,%20S.&rft.date=2009-08-20&rft.volume=60&rft.issue=11&rft.spage=1259&rft.epage=1288&rft.pages=1259-1288&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.1934&rft_dat=%3Cproquest_cross%3E1770278325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770278325&rft_id=info:pmid/&rfr_iscdi=true