Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes
The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. T...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2011-02, Vol.43 (2), p.379-385 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385 |
---|---|
container_issue | 2 |
container_start_page | 379 |
container_title | Energy and buildings |
container_volume | 43 |
creator | Luo, C. Moghtaderi, B. Hands, S. Page, A. |
description | The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. The overall heat transfer coefficient for the air gap, and the convective heat transfer coefficient for air gap surfaces and room surfaces are determined by the linear relationship between the surface convective heat flux and the temperature difference. Convective heat flux is obtained by removing the thermal radiation flux from the total surface heat flux. Finally, the predicted surface heat fluxes using the calculated thermal properties and ASHRAE values were compared with the measurements. |
doi_str_mv | 10.1016/j.enbuild.2010.09.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896185896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778810003506</els_id><sourcerecordid>896185896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-c6c3eb949634472e0f566bf3ee76eef31807a62edd38367acd5a79989599c8c13</originalsourceid><addsrcrecordid>eNqFksuOFCEUhmuhiePoI5iwMbqwWyiK28qY8ZpM4kbXhKIODi0FLVCt_US-ptR0x6W94JLDd_5Dzvm77hnBW4IJf73bQhwXH6Ztj1sMqy2m-EF3hamQGyGkfNQ9LmWHMeZMkKvuzzuokGcfffyO6h2sK88mIGv2xvpqooVXyKY4Lbb6g69HZOJ0T7bgAdYgoDswFdVsYnGQ2wM4562HWFFyyKAxe_sD_TIhoHHNj0u7HtGcoq8pQ5ODeQ_Z1CVDOemn2v5wL-vC8hvKk-6hM6HA0_N53X378P7rzafN7ZePn2_e3m7swFXdWG4pjGpQnA6D6AE7xvnoKIDgAI4SiYXhPUwTlZQLYydmhFJSMaWstIRedy9Ouvucfi5Qqp59sRCCiZCWoqXiRLK2XyZZa3Df86GRL_9LEiEEGRSV4jLKVU-ZGDhrKDuhNqdSMji9z342-agJ1qsX9E6fvaBXL2isdPNCy3t-LmGKNcG1qVlf_iX3VCiMmWzcmxMHrd0HD1mXdaQWJp_b2PWU_IVKfwGgTtIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692357465</pqid></control><display><type>article</type><title>Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Luo, C. ; Moghtaderi, B. ; Hands, S. ; Page, A.</creator><creatorcontrib>Luo, C. ; Moghtaderi, B. ; Hands, S. ; Page, A.</creatorcontrib><description>The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. The overall heat transfer coefficient for the air gap, and the convective heat transfer coefficient for air gap surfaces and room surfaces are determined by the linear relationship between the surface convective heat flux and the temperature difference. Convective heat flux is obtained by removing the thermal radiation flux from the total surface heat flux. Finally, the predicted surface heat fluxes using the calculated thermal properties and ASHRAE values were compared with the measurements.</description><identifier>ISSN: 0378-7788</identifier><identifier>DOI: 10.1016/j.enbuild.2010.09.030</identifier><identifier>CODEN: ENEBDR</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Building structure ; Buildings ; Buildings. Public works ; Capacitance ; Coefficients ; Computation methods. Tables. Charts ; Construction (buildings and works) ; Convective heat transfer ; Convective heat transfer coefficient ; Density ; Exact sciences and technology ; External envelopes ; Finite volume ; Fluxes ; Heat flux ; Heat transfer ; Masonry structure ; Mathematical analysis ; Structural analysis. Stresses ; Thermal capacitance ; Thermal conductivity ; Thermal properties ; Thermal radiation ; Total exchange area ; Wall. Partition</subject><ispartof>Energy and buildings, 2011-02, Vol.43 (2), p.379-385</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-c6c3eb949634472e0f566bf3ee76eef31807a62edd38367acd5a79989599c8c13</citedby><cites>FETCH-LOGICAL-c469t-c6c3eb949634472e0f566bf3ee76eef31807a62edd38367acd5a79989599c8c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2010.09.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23790058$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, C.</creatorcontrib><creatorcontrib>Moghtaderi, B.</creatorcontrib><creatorcontrib>Hands, S.</creatorcontrib><creatorcontrib>Page, A.</creatorcontrib><title>Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes</title><title>Energy and buildings</title><description>The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. The overall heat transfer coefficient for the air gap, and the convective heat transfer coefficient for air gap surfaces and room surfaces are determined by the linear relationship between the surface convective heat flux and the temperature difference. Convective heat flux is obtained by removing the thermal radiation flux from the total surface heat flux. Finally, the predicted surface heat fluxes using the calculated thermal properties and ASHRAE values were compared with the measurements.</description><subject>Applied sciences</subject><subject>Building structure</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Capacitance</subject><subject>Coefficients</subject><subject>Computation methods. Tables. Charts</subject><subject>Construction (buildings and works)</subject><subject>Convective heat transfer</subject><subject>Convective heat transfer coefficient</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>External envelopes</subject><subject>Finite volume</subject><subject>Fluxes</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Masonry structure</subject><subject>Mathematical analysis</subject><subject>Structural analysis. Stresses</subject><subject>Thermal capacitance</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermal radiation</subject><subject>Total exchange area</subject><subject>Wall. Partition</subject><issn>0378-7788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFksuOFCEUhmuhiePoI5iwMbqwWyiK28qY8ZpM4kbXhKIODi0FLVCt_US-ptR0x6W94JLDd_5Dzvm77hnBW4IJf73bQhwXH6Ztj1sMqy2m-EF3hamQGyGkfNQ9LmWHMeZMkKvuzzuokGcfffyO6h2sK88mIGv2xvpqooVXyKY4Lbb6g69HZOJ0T7bgAdYgoDswFdVsYnGQ2wM4562HWFFyyKAxe_sD_TIhoHHNj0u7HtGcoq8pQ5ODeQ_Z1CVDOemn2v5wL-vC8hvKk-6hM6HA0_N53X378P7rzafN7ZePn2_e3m7swFXdWG4pjGpQnA6D6AE7xvnoKIDgAI4SiYXhPUwTlZQLYydmhFJSMaWstIRedy9Ouvucfi5Qqp59sRCCiZCWoqXiRLK2XyZZa3Df86GRL_9LEiEEGRSV4jLKVU-ZGDhrKDuhNqdSMji9z342-agJ1qsX9E6fvaBXL2isdPNCy3t-LmGKNcG1qVlf_iX3VCiMmWzcmxMHrd0HD1mXdaQWJp_b2PWU_IVKfwGgTtIc</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Luo, C.</creator><creator>Moghtaderi, B.</creator><creator>Hands, S.</creator><creator>Page, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110201</creationdate><title>Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes</title><author>Luo, C. ; Moghtaderi, B. ; Hands, S. ; Page, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-c6c3eb949634472e0f566bf3ee76eef31807a62edd38367acd5a79989599c8c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Building structure</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Capacitance</topic><topic>Coefficients</topic><topic>Computation methods. Tables. Charts</topic><topic>Construction (buildings and works)</topic><topic>Convective heat transfer</topic><topic>Convective heat transfer coefficient</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>External envelopes</topic><topic>Finite volume</topic><topic>Fluxes</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Masonry structure</topic><topic>Mathematical analysis</topic><topic>Structural analysis. Stresses</topic><topic>Thermal capacitance</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermal radiation</topic><topic>Total exchange area</topic><topic>Wall. Partition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, C.</creatorcontrib><creatorcontrib>Moghtaderi, B.</creatorcontrib><creatorcontrib>Hands, S.</creatorcontrib><creatorcontrib>Page, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, C.</au><au>Moghtaderi, B.</au><au>Hands, S.</au><au>Page, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes</atitle><jtitle>Energy and buildings</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>43</volume><issue>2</issue><spage>379</spage><epage>385</epage><pages>379-385</pages><issn>0378-7788</issn><coden>ENEBDR</coden><abstract>The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. The overall heat transfer coefficient for the air gap, and the convective heat transfer coefficient for air gap surfaces and room surfaces are determined by the linear relationship between the surface convective heat flux and the temperature difference. Convective heat flux is obtained by removing the thermal radiation flux from the total surface heat flux. Finally, the predicted surface heat fluxes using the calculated thermal properties and ASHRAE values were compared with the measurements.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2010.09.030</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2011-02, Vol.43 (2), p.379-385 |
issn | 0378-7788 |
language | eng |
recordid | cdi_proquest_miscellaneous_896185896 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Building structure Buildings Buildings. Public works Capacitance Coefficients Computation methods. Tables. Charts Construction (buildings and works) Convective heat transfer Convective heat transfer coefficient Density Exact sciences and technology External envelopes Finite volume Fluxes Heat flux Heat transfer Masonry structure Mathematical analysis Structural analysis. Stresses Thermal capacitance Thermal conductivity Thermal properties Thermal radiation Total exchange area Wall. Partition |
title | Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20thermal%20capacitance,%20conductivity%20and%20the%20convective%20heat%20transfer%20coefficient%20of%20a%20brick%20wall%20by%20annually%20monitored%20temperatures%20and%20total%20heat%20fluxes&rft.jtitle=Energy%20and%20buildings&rft.au=Luo,%20C.&rft.date=2011-02-01&rft.volume=43&rft.issue=2&rft.spage=379&rft.epage=385&rft.pages=379-385&rft.issn=0378-7788&rft.coden=ENEBDR&rft_id=info:doi/10.1016/j.enbuild.2010.09.030&rft_dat=%3Cproquest_cross%3E896185896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692357465&rft_id=info:pmid/&rft_els_id=S0378778810003506&rfr_iscdi=true |