Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes

The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2011-02, Vol.43 (2), p.379-385
Hauptverfasser: Luo, C., Moghtaderi, B., Hands, S., Page, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 2
container_start_page 379
container_title Energy and buildings
container_volume 43
creator Luo, C.
Moghtaderi, B.
Hands, S.
Page, A.
description The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. The overall heat transfer coefficient for the air gap, and the convective heat transfer coefficient for air gap surfaces and room surfaces are determined by the linear relationship between the surface convective heat flux and the temperature difference. Convective heat flux is obtained by removing the thermal radiation flux from the total surface heat flux. Finally, the predicted surface heat fluxes using the calculated thermal properties and ASHRAE values were compared with the measurements.
doi_str_mv 10.1016/j.enbuild.2010.09.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896185896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778810003506</els_id><sourcerecordid>896185896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-c6c3eb949634472e0f566bf3ee76eef31807a62edd38367acd5a79989599c8c13</originalsourceid><addsrcrecordid>eNqFksuOFCEUhmuhiePoI5iwMbqwWyiK28qY8ZpM4kbXhKIODi0FLVCt_US-ptR0x6W94JLDd_5Dzvm77hnBW4IJf73bQhwXH6Ztj1sMqy2m-EF3hamQGyGkfNQ9LmWHMeZMkKvuzzuokGcfffyO6h2sK88mIGv2xvpqooVXyKY4Lbb6g69HZOJ0T7bgAdYgoDswFdVsYnGQ2wM4562HWFFyyKAxe_sD_TIhoHHNj0u7HtGcoq8pQ5ODeQ_Z1CVDOemn2v5wL-vC8hvKk-6hM6HA0_N53X378P7rzafN7ZePn2_e3m7swFXdWG4pjGpQnA6D6AE7xvnoKIDgAI4SiYXhPUwTlZQLYydmhFJSMaWstIRedy9Ouvucfi5Qqp59sRCCiZCWoqXiRLK2XyZZa3Df86GRL_9LEiEEGRSV4jLKVU-ZGDhrKDuhNqdSMji9z342-agJ1qsX9E6fvaBXL2isdPNCy3t-LmGKNcG1qVlf_iX3VCiMmWzcmxMHrd0HD1mXdaQWJp_b2PWU_IVKfwGgTtIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692357465</pqid></control><display><type>article</type><title>Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Luo, C. ; Moghtaderi, B. ; Hands, S. ; Page, A.</creator><creatorcontrib>Luo, C. ; Moghtaderi, B. ; Hands, S. ; Page, A.</creatorcontrib><description>The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. The overall heat transfer coefficient for the air gap, and the convective heat transfer coefficient for air gap surfaces and room surfaces are determined by the linear relationship between the surface convective heat flux and the temperature difference. Convective heat flux is obtained by removing the thermal radiation flux from the total surface heat flux. Finally, the predicted surface heat fluxes using the calculated thermal properties and ASHRAE values were compared with the measurements.</description><identifier>ISSN: 0378-7788</identifier><identifier>DOI: 10.1016/j.enbuild.2010.09.030</identifier><identifier>CODEN: ENEBDR</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Building structure ; Buildings ; Buildings. Public works ; Capacitance ; Coefficients ; Computation methods. Tables. Charts ; Construction (buildings and works) ; Convective heat transfer ; Convective heat transfer coefficient ; Density ; Exact sciences and technology ; External envelopes ; Finite volume ; Fluxes ; Heat flux ; Heat transfer ; Masonry structure ; Mathematical analysis ; Structural analysis. Stresses ; Thermal capacitance ; Thermal conductivity ; Thermal properties ; Thermal radiation ; Total exchange area ; Wall. Partition</subject><ispartof>Energy and buildings, 2011-02, Vol.43 (2), p.379-385</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-c6c3eb949634472e0f566bf3ee76eef31807a62edd38367acd5a79989599c8c13</citedby><cites>FETCH-LOGICAL-c469t-c6c3eb949634472e0f566bf3ee76eef31807a62edd38367acd5a79989599c8c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2010.09.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23790058$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, C.</creatorcontrib><creatorcontrib>Moghtaderi, B.</creatorcontrib><creatorcontrib>Hands, S.</creatorcontrib><creatorcontrib>Page, A.</creatorcontrib><title>Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes</title><title>Energy and buildings</title><description>The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. The overall heat transfer coefficient for the air gap, and the convective heat transfer coefficient for air gap surfaces and room surfaces are determined by the linear relationship between the surface convective heat flux and the temperature difference. Convective heat flux is obtained by removing the thermal radiation flux from the total surface heat flux. Finally, the predicted surface heat fluxes using the calculated thermal properties and ASHRAE values were compared with the measurements.</description><subject>Applied sciences</subject><subject>Building structure</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Capacitance</subject><subject>Coefficients</subject><subject>Computation methods. Tables. Charts</subject><subject>Construction (buildings and works)</subject><subject>Convective heat transfer</subject><subject>Convective heat transfer coefficient</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>External envelopes</subject><subject>Finite volume</subject><subject>Fluxes</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Masonry structure</subject><subject>Mathematical analysis</subject><subject>Structural analysis. Stresses</subject><subject>Thermal capacitance</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermal radiation</subject><subject>Total exchange area</subject><subject>Wall. Partition</subject><issn>0378-7788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFksuOFCEUhmuhiePoI5iwMbqwWyiK28qY8ZpM4kbXhKIODi0FLVCt_US-ptR0x6W94JLDd_5Dzvm77hnBW4IJf73bQhwXH6Ztj1sMqy2m-EF3hamQGyGkfNQ9LmWHMeZMkKvuzzuokGcfffyO6h2sK88mIGv2xvpqooVXyKY4Lbb6g69HZOJ0T7bgAdYgoDswFdVsYnGQ2wM4562HWFFyyKAxe_sD_TIhoHHNj0u7HtGcoq8pQ5ODeQ_Z1CVDOemn2v5wL-vC8hvKk-6hM6HA0_N53X378P7rzafN7ZePn2_e3m7swFXdWG4pjGpQnA6D6AE7xvnoKIDgAI4SiYXhPUwTlZQLYydmhFJSMaWstIRedy9Ouvucfi5Qqp59sRCCiZCWoqXiRLK2XyZZa3Df86GRL_9LEiEEGRSV4jLKVU-ZGDhrKDuhNqdSMji9z342-agJ1qsX9E6fvaBXL2isdPNCy3t-LmGKNcG1qVlf_iX3VCiMmWzcmxMHrd0HD1mXdaQWJp_b2PWU_IVKfwGgTtIc</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Luo, C.</creator><creator>Moghtaderi, B.</creator><creator>Hands, S.</creator><creator>Page, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110201</creationdate><title>Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes</title><author>Luo, C. ; Moghtaderi, B. ; Hands, S. ; Page, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-c6c3eb949634472e0f566bf3ee76eef31807a62edd38367acd5a79989599c8c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Building structure</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Capacitance</topic><topic>Coefficients</topic><topic>Computation methods. Tables. Charts</topic><topic>Construction (buildings and works)</topic><topic>Convective heat transfer</topic><topic>Convective heat transfer coefficient</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>External envelopes</topic><topic>Finite volume</topic><topic>Fluxes</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Masonry structure</topic><topic>Mathematical analysis</topic><topic>Structural analysis. Stresses</topic><topic>Thermal capacitance</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermal radiation</topic><topic>Total exchange area</topic><topic>Wall. Partition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, C.</creatorcontrib><creatorcontrib>Moghtaderi, B.</creatorcontrib><creatorcontrib>Hands, S.</creatorcontrib><creatorcontrib>Page, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, C.</au><au>Moghtaderi, B.</au><au>Hands, S.</au><au>Page, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes</atitle><jtitle>Energy and buildings</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>43</volume><issue>2</issue><spage>379</spage><epage>385</epage><pages>379-385</pages><issn>0378-7788</issn><coden>ENEBDR</coden><abstract>The finite volume scheme and complex Fourier analysis methods are proposed to determine the thermal capacitance (defined as the product of density and specific capacity) and thermal conductivity for a building construction layer using the monitored inner/outer surface temperatures and heat fluxes. The overall heat transfer coefficient for the air gap, and the convective heat transfer coefficient for air gap surfaces and room surfaces are determined by the linear relationship between the surface convective heat flux and the temperature difference. Convective heat flux is obtained by removing the thermal radiation flux from the total surface heat flux. Finally, the predicted surface heat fluxes using the calculated thermal properties and ASHRAE values were compared with the measurements.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2010.09.030</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2011-02, Vol.43 (2), p.379-385
issn 0378-7788
language eng
recordid cdi_proquest_miscellaneous_896185896
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Building structure
Buildings
Buildings. Public works
Capacitance
Coefficients
Computation methods. Tables. Charts
Construction (buildings and works)
Convective heat transfer
Convective heat transfer coefficient
Density
Exact sciences and technology
External envelopes
Finite volume
Fluxes
Heat flux
Heat transfer
Masonry structure
Mathematical analysis
Structural analysis. Stresses
Thermal capacitance
Thermal conductivity
Thermal properties
Thermal radiation
Total exchange area
Wall. Partition
title Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20thermal%20capacitance,%20conductivity%20and%20the%20convective%20heat%20transfer%20coefficient%20of%20a%20brick%20wall%20by%20annually%20monitored%20temperatures%20and%20total%20heat%20fluxes&rft.jtitle=Energy%20and%20buildings&rft.au=Luo,%20C.&rft.date=2011-02-01&rft.volume=43&rft.issue=2&rft.spage=379&rft.epage=385&rft.pages=379-385&rft.issn=0378-7788&rft.coden=ENEBDR&rft_id=info:doi/10.1016/j.enbuild.2010.09.030&rft_dat=%3Cproquest_cross%3E896185896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692357465&rft_id=info:pmid/&rft_els_id=S0378778810003506&rfr_iscdi=true