Magnetic properties of biosynthesized magnetite nanoparticles
Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes suc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2005-12, Vol.41 (12), p.4384-4389 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4389 |
---|---|
container_issue | 12 |
container_start_page | 4384 |
container_title | IEEE transactions on magnetics |
container_volume | 41 |
creator | Yeary, L.W. Ji-Won Moon Love, L.J. Thompson, J.R. Rawn, C.J. Phelps, T.J. |
description | Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65/spl deg/C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles. |
doi_str_mv | 10.1109/TMAG.2005.857482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896181950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556708</ieee_id><sourcerecordid>2351352161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-283c22dbf9c7a534db8ddccf7c287e4409001684a6d17510b6eccec5bbb826b63</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKt3wUsR1FNnkubnwcMYOoUNL_Mc0vRVO7q2Nt1h_vWmdDDwIO8QHvm8x_d9ELomeEoI1o_r1WwxpRjzqeKSKXqCJkQzkmAs9CmaYExUoplg5-jC-01oGSd4gp5W9rOGvnRx2zUtdH0JPm6KOCsbv6_7L_DlD-TxdqR6iGtbN60NnKvAX6KzwlYerg5vhD5entfz12T5vnibz5aJY0z3CVWpozTPCu2k5SnLM5XnzhXSUSWBMaxDHqGYFTmRIVYmwDlwPMsyRUUm0gg9jHtDyO8d-N5sS--gqmwNzc4bpQVRRHMcyPt_SapwSqkmAbz9A26aXVeHK4wSkol0qAjhEXJd430HhWm7cmu7vSHYDNrNoN0M2s2oPYzcHfZa72xVdLZ2pT_OyZQrEYRE6GbkSgA4fnMuJFbpL_gaixE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867463636</pqid></control><display><type>article</type><title>Magnetic properties of biosynthesized magnetite nanoparticles</title><source>IEEE Electronic Library (IEL)</source><creator>Yeary, L.W. ; Ji-Won Moon ; Love, L.J. ; Thompson, J.R. ; Rawn, C.J. ; Phelps, T.J.</creator><creatorcontrib>Yeary, L.W. ; Ji-Won Moon ; Love, L.J. ; Thompson, J.R. ; Rawn, C.J. ; Phelps, T.J.</creatorcontrib><description>Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65/spl deg/C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2005.857482</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bacteria ; Biological cells ; Biological materials ; biomagnetics ; Cross-disciplinary physics: materials science; rheology ; Crystallites ; Diffraction ; Exact sciences and technology ; Iron ; Light scattering ; Magnetic field induced strain ; Magnetic materials ; Magnetic properties ; Magnetism ; Magnetite ; Materials science ; Microorganisms ; Morphology ; Nanoparticles ; nanotechnology ; Other topics in materials science ; Physics ; Saturation magnetization ; Superconducting magnets ; Synthesis</subject><ispartof>IEEE transactions on magnetics, 2005-12, Vol.41 (12), p.4384-4389</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-283c22dbf9c7a534db8ddccf7c287e4409001684a6d17510b6eccec5bbb826b63</citedby><cites>FETCH-LOGICAL-c449t-283c22dbf9c7a534db8ddccf7c287e4409001684a6d17510b6eccec5bbb826b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17358628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeary, L.W.</creatorcontrib><creatorcontrib>Ji-Won Moon</creatorcontrib><creatorcontrib>Love, L.J.</creatorcontrib><creatorcontrib>Thompson, J.R.</creatorcontrib><creatorcontrib>Rawn, C.J.</creatorcontrib><creatorcontrib>Phelps, T.J.</creatorcontrib><title>Magnetic properties of biosynthesized magnetite nanoparticles</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65/spl deg/C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.</description><subject>Bacteria</subject><subject>Biological cells</subject><subject>Biological materials</subject><subject>biomagnetics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallites</subject><subject>Diffraction</subject><subject>Exact sciences and technology</subject><subject>Iron</subject><subject>Light scattering</subject><subject>Magnetic field induced strain</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Materials science</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>nanotechnology</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Saturation magnetization</subject><subject>Superconducting magnets</subject><subject>Synthesis</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM9LwzAUx4MoOKt3wUsR1FNnkubnwcMYOoUNL_Mc0vRVO7q2Nt1h_vWmdDDwIO8QHvm8x_d9ELomeEoI1o_r1WwxpRjzqeKSKXqCJkQzkmAs9CmaYExUoplg5-jC-01oGSd4gp5W9rOGvnRx2zUtdH0JPm6KOCsbv6_7L_DlD-TxdqR6iGtbN60NnKvAX6KzwlYerg5vhD5entfz12T5vnibz5aJY0z3CVWpozTPCu2k5SnLM5XnzhXSUSWBMaxDHqGYFTmRIVYmwDlwPMsyRUUm0gg9jHtDyO8d-N5sS--gqmwNzc4bpQVRRHMcyPt_SapwSqkmAbz9A26aXVeHK4wSkol0qAjhEXJd430HhWm7cmu7vSHYDNrNoN0M2s2oPYzcHfZa72xVdLZ2pT_OyZQrEYRE6GbkSgA4fnMuJFbpL_gaixE</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Yeary, L.W.</creator><creator>Ji-Won Moon</creator><creator>Love, L.J.</creator><creator>Thompson, J.R.</creator><creator>Rawn, C.J.</creator><creator>Phelps, T.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051201</creationdate><title>Magnetic properties of biosynthesized magnetite nanoparticles</title><author>Yeary, L.W. ; Ji-Won Moon ; Love, L.J. ; Thompson, J.R. ; Rawn, C.J. ; Phelps, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-283c22dbf9c7a534db8ddccf7c287e4409001684a6d17510b6eccec5bbb826b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bacteria</topic><topic>Biological cells</topic><topic>Biological materials</topic><topic>biomagnetics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallites</topic><topic>Diffraction</topic><topic>Exact sciences and technology</topic><topic>Iron</topic><topic>Light scattering</topic><topic>Magnetic field induced strain</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Materials science</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>nanotechnology</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Saturation magnetization</topic><topic>Superconducting magnets</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yeary, L.W.</creatorcontrib><creatorcontrib>Ji-Won Moon</creatorcontrib><creatorcontrib>Love, L.J.</creatorcontrib><creatorcontrib>Thompson, J.R.</creatorcontrib><creatorcontrib>Rawn, C.J.</creatorcontrib><creatorcontrib>Phelps, T.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yeary, L.W.</au><au>Ji-Won Moon</au><au>Love, L.J.</au><au>Thompson, J.R.</au><au>Rawn, C.J.</au><au>Phelps, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic properties of biosynthesized magnetite nanoparticles</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>41</volume><issue>12</issue><spage>4384</spage><epage>4389</epage><pages>4384-4389</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65/spl deg/C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2005.857482</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2005-12, Vol.41 (12), p.4384-4389 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_miscellaneous_896181950 |
source | IEEE Electronic Library (IEL) |
subjects | Bacteria Biological cells Biological materials biomagnetics Cross-disciplinary physics: materials science rheology Crystallites Diffraction Exact sciences and technology Iron Light scattering Magnetic field induced strain Magnetic materials Magnetic properties Magnetism Magnetite Materials science Microorganisms Morphology Nanoparticles nanotechnology Other topics in materials science Physics Saturation magnetization Superconducting magnets Synthesis |
title | Magnetic properties of biosynthesized magnetite nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20properties%20of%20biosynthesized%20magnetite%20nanoparticles&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Yeary,%20L.W.&rft.date=2005-12-01&rft.volume=41&rft.issue=12&rft.spage=4384&rft.epage=4389&rft.pages=4384-4389&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2005.857482&rft_dat=%3Cproquest_RIE%3E2351352161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867463636&rft_id=info:pmid/&rft_ieee_id=1556708&rfr_iscdi=true |