Magnetic properties of biosynthesized magnetite nanoparticles

Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2005-12, Vol.41 (12), p.4384-4389
Hauptverfasser: Yeary, L.W., Ji-Won Moon, Love, L.J., Thompson, J.R., Rawn, C.J., Phelps, T.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4389
container_issue 12
container_start_page 4384
container_title IEEE transactions on magnetics
container_volume 41
creator Yeary, L.W.
Ji-Won Moon
Love, L.J.
Thompson, J.R.
Rawn, C.J.
Phelps, T.J.
description Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65/spl deg/C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.
doi_str_mv 10.1109/TMAG.2005.857482
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896181950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556708</ieee_id><sourcerecordid>2351352161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-283c22dbf9c7a534db8ddccf7c287e4409001684a6d17510b6eccec5bbb826b63</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKt3wUsR1FNnkubnwcMYOoUNL_Mc0vRVO7q2Nt1h_vWmdDDwIO8QHvm8x_d9ELomeEoI1o_r1WwxpRjzqeKSKXqCJkQzkmAs9CmaYExUoplg5-jC-01oGSd4gp5W9rOGvnRx2zUtdH0JPm6KOCsbv6_7L_DlD-TxdqR6iGtbN60NnKvAX6KzwlYerg5vhD5entfz12T5vnibz5aJY0z3CVWpozTPCu2k5SnLM5XnzhXSUSWBMaxDHqGYFTmRIVYmwDlwPMsyRUUm0gg9jHtDyO8d-N5sS--gqmwNzc4bpQVRRHMcyPt_SapwSqkmAbz9A26aXVeHK4wSkol0qAjhEXJd430HhWm7cmu7vSHYDNrNoN0M2s2oPYzcHfZa72xVdLZ2pT_OyZQrEYRE6GbkSgA4fnMuJFbpL_gaixE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867463636</pqid></control><display><type>article</type><title>Magnetic properties of biosynthesized magnetite nanoparticles</title><source>IEEE Electronic Library (IEL)</source><creator>Yeary, L.W. ; Ji-Won Moon ; Love, L.J. ; Thompson, J.R. ; Rawn, C.J. ; Phelps, T.J.</creator><creatorcontrib>Yeary, L.W. ; Ji-Won Moon ; Love, L.J. ; Thompson, J.R. ; Rawn, C.J. ; Phelps, T.J.</creatorcontrib><description>Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65/spl deg/C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2005.857482</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bacteria ; Biological cells ; Biological materials ; biomagnetics ; Cross-disciplinary physics: materials science; rheology ; Crystallites ; Diffraction ; Exact sciences and technology ; Iron ; Light scattering ; Magnetic field induced strain ; Magnetic materials ; Magnetic properties ; Magnetism ; Magnetite ; Materials science ; Microorganisms ; Morphology ; Nanoparticles ; nanotechnology ; Other topics in materials science ; Physics ; Saturation magnetization ; Superconducting magnets ; Synthesis</subject><ispartof>IEEE transactions on magnetics, 2005-12, Vol.41 (12), p.4384-4389</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-283c22dbf9c7a534db8ddccf7c287e4409001684a6d17510b6eccec5bbb826b63</citedby><cites>FETCH-LOGICAL-c449t-283c22dbf9c7a534db8ddccf7c287e4409001684a6d17510b6eccec5bbb826b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17358628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeary, L.W.</creatorcontrib><creatorcontrib>Ji-Won Moon</creatorcontrib><creatorcontrib>Love, L.J.</creatorcontrib><creatorcontrib>Thompson, J.R.</creatorcontrib><creatorcontrib>Rawn, C.J.</creatorcontrib><creatorcontrib>Phelps, T.J.</creatorcontrib><title>Magnetic properties of biosynthesized magnetite nanoparticles</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65/spl deg/C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.</description><subject>Bacteria</subject><subject>Biological cells</subject><subject>Biological materials</subject><subject>biomagnetics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallites</subject><subject>Diffraction</subject><subject>Exact sciences and technology</subject><subject>Iron</subject><subject>Light scattering</subject><subject>Magnetic field induced strain</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Materials science</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>nanotechnology</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Saturation magnetization</subject><subject>Superconducting magnets</subject><subject>Synthesis</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM9LwzAUx4MoOKt3wUsR1FNnkubnwcMYOoUNL_Mc0vRVO7q2Nt1h_vWmdDDwIO8QHvm8x_d9ELomeEoI1o_r1WwxpRjzqeKSKXqCJkQzkmAs9CmaYExUoplg5-jC-01oGSd4gp5W9rOGvnRx2zUtdH0JPm6KOCsbv6_7L_DlD-TxdqR6iGtbN60NnKvAX6KzwlYerg5vhD5entfz12T5vnibz5aJY0z3CVWpozTPCu2k5SnLM5XnzhXSUSWBMaxDHqGYFTmRIVYmwDlwPMsyRUUm0gg9jHtDyO8d-N5sS--gqmwNzc4bpQVRRHMcyPt_SapwSqkmAbz9A26aXVeHK4wSkol0qAjhEXJd430HhWm7cmu7vSHYDNrNoN0M2s2oPYzcHfZa72xVdLZ2pT_OyZQrEYRE6GbkSgA4fnMuJFbpL_gaixE</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Yeary, L.W.</creator><creator>Ji-Won Moon</creator><creator>Love, L.J.</creator><creator>Thompson, J.R.</creator><creator>Rawn, C.J.</creator><creator>Phelps, T.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051201</creationdate><title>Magnetic properties of biosynthesized magnetite nanoparticles</title><author>Yeary, L.W. ; Ji-Won Moon ; Love, L.J. ; Thompson, J.R. ; Rawn, C.J. ; Phelps, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-283c22dbf9c7a534db8ddccf7c287e4409001684a6d17510b6eccec5bbb826b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bacteria</topic><topic>Biological cells</topic><topic>Biological materials</topic><topic>biomagnetics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallites</topic><topic>Diffraction</topic><topic>Exact sciences and technology</topic><topic>Iron</topic><topic>Light scattering</topic><topic>Magnetic field induced strain</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Materials science</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>nanotechnology</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Saturation magnetization</topic><topic>Superconducting magnets</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yeary, L.W.</creatorcontrib><creatorcontrib>Ji-Won Moon</creatorcontrib><creatorcontrib>Love, L.J.</creatorcontrib><creatorcontrib>Thompson, J.R.</creatorcontrib><creatorcontrib>Rawn, C.J.</creatorcontrib><creatorcontrib>Phelps, T.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yeary, L.W.</au><au>Ji-Won Moon</au><au>Love, L.J.</au><au>Thompson, J.R.</au><au>Rawn, C.J.</au><au>Phelps, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic properties of biosynthesized magnetite nanoparticles</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>41</volume><issue>12</issue><spage>4384</spage><epage>4389</epage><pages>4384-4389</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65/spl deg/C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2005.857482</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2005-12, Vol.41 (12), p.4384-4389
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_896181950
source IEEE Electronic Library (IEL)
subjects Bacteria
Biological cells
Biological materials
biomagnetics
Cross-disciplinary physics: materials science
rheology
Crystallites
Diffraction
Exact sciences and technology
Iron
Light scattering
Magnetic field induced strain
Magnetic materials
Magnetic properties
Magnetism
Magnetite
Materials science
Microorganisms
Morphology
Nanoparticles
nanotechnology
Other topics in materials science
Physics
Saturation magnetization
Superconducting magnets
Synthesis
title Magnetic properties of biosynthesized magnetite nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20properties%20of%20biosynthesized%20magnetite%20nanoparticles&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Yeary,%20L.W.&rft.date=2005-12-01&rft.volume=41&rft.issue=12&rft.spage=4384&rft.epage=4389&rft.pages=4384-4389&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2005.857482&rft_dat=%3Cproquest_RIE%3E2351352161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867463636&rft_id=info:pmid/&rft_ieee_id=1556708&rfr_iscdi=true