Modeling electrochemical partial oxidation of methane for cogeneration of electricity and syngas in solid-oxide fuel cells

This paper uses computational models to evaluate strategies for scaling electrochemical partial oxidation (EPOX) processes from the laboratory scale to practical application. In addition to producing electrical energy alone, solid-oxide fuel cells (SOFC) can be operated with hydrocarbon fuel streams...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2008-08, Vol.183 (1), p.143-150
Hauptverfasser: Zhu, Huayang, Kee, Robert J., Pillai, Manoj R., Barnett, Scott A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 1
container_start_page 143
container_title Journal of power sources
container_volume 183
creator Zhu, Huayang
Kee, Robert J.
Pillai, Manoj R.
Barnett, Scott A.
description This paper uses computational models to evaluate strategies for scaling electrochemical partial oxidation (EPOX) processes from the laboratory scale to practical application. In addition to producing electrical energy alone, solid-oxide fuel cells (SOFC) can be operated with hydrocarbon fuel streams to produce synthesis gas (H 2 and CO) as well. SOFC systems are usually operated to consume most of the fuel and produce electricity. However, by operating with a hydrocarbon fuel at relatively high flow rates, the exhaust-gas composition can be predominantly syngas. In this case the steam (and CO 2), produced from electrochemical and thermal reactions, reacts to reform the hydrocarbon fuel within the catalytic anode support structure. A practical limitation of electrochemical partial oxidation operation is the fact that carbon tends to deposit on Ni-based anode catalysts. The present paper explores the use of barrier layers to prevent carbon deposits. The results show that a tubular cell can be designed to deliver syngas and electricity using methane as the primary fuel.
doi_str_mv 10.1016/j.jpowsour.2008.04.076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896180630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775308009452</els_id><sourcerecordid>1777151048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-fd0834f740abf91ccd2f7772a1388fcf706b1463f3cea8cd72314998e36faf1c3</originalsourceid><addsrcrecordid>eNqFkUFvGyEQhVHVSnWd_IWKS9VedjssGPAtUZS2kVLl0pwRgcHBWoMD66TOry-W0xzb0xz45j3mPUI-MugZMPl13a-3-anmXekHAN2D6EHJN2TGtOLdoBaLt2QGXOlOqQV_Tz7UugYAxhTMyPPP7HGMaUVxRDeV7O5xE50d6daWKbaZf0dvp5gTzYFucLq3CWnIhbq8woTl9e0oEF2c9tQmT-s-rWylMdGax-i7g1Db3OFIHY5jPSHvgh0rnr7MObn9dvnr4kd3ffP96uL8unNC6KkLHjQXQQmwd2HJnPNDUEoNlnGtgwsK5B0Tkgfu0Grn1cCZWC41chlsYI7Pyeej7rbkhx3WyWxiPfygHZJ31eilZBokh0Z--SfJmi9bMBC6ofKIupJrLRjMtsSNLXvDwBxqMWvztxZzqMWAMK2WtvjpxcPWFnMoNrlYX7cHkBq4Fo07O3LYonmMWEx1EZNDH0vL2fgc_2f1B0Sgqew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777151048</pqid></control><display><type>article</type><title>Modeling electrochemical partial oxidation of methane for cogeneration of electricity and syngas in solid-oxide fuel cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhu, Huayang ; Kee, Robert J. ; Pillai, Manoj R. ; Barnett, Scott A.</creator><creatorcontrib>Zhu, Huayang ; Kee, Robert J. ; Pillai, Manoj R. ; Barnett, Scott A.</creatorcontrib><description>This paper uses computational models to evaluate strategies for scaling electrochemical partial oxidation (EPOX) processes from the laboratory scale to practical application. In addition to producing electrical energy alone, solid-oxide fuel cells (SOFC) can be operated with hydrocarbon fuel streams to produce synthesis gas (H 2 and CO) as well. SOFC systems are usually operated to consume most of the fuel and produce electricity. However, by operating with a hydrocarbon fuel at relatively high flow rates, the exhaust-gas composition can be predominantly syngas. In this case the steam (and CO 2), produced from electrochemical and thermal reactions, reacts to reform the hydrocarbon fuel within the catalytic anode support structure. A practical limitation of electrochemical partial oxidation operation is the fact that carbon tends to deposit on Ni-based anode catalysts. The present paper explores the use of barrier layers to prevent carbon deposits. The results show that a tubular cell can be designed to deliver syngas and electricity using methane as the primary fuel.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2008.04.076</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Carbon ; Catalysts ; Cogeneration ; Combined power plants ; Electricity ; Energy ; Energy. Thermal use of fuels ; EPOX ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Hydrocarbon fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Methane ; Modeling ; Oxidation ; Partial oxidation ; Scale (corrosion) ; SOFC ; Solid oxide fuel cells ; Syngas</subject><ispartof>Journal of power sources, 2008-08, Vol.183 (1), p.143-150</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-fd0834f740abf91ccd2f7772a1388fcf706b1463f3cea8cd72314998e36faf1c3</citedby><cites>FETCH-LOGICAL-c448t-fd0834f740abf91ccd2f7772a1388fcf706b1463f3cea8cd72314998e36faf1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2008.04.076$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20680384$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Huayang</creatorcontrib><creatorcontrib>Kee, Robert J.</creatorcontrib><creatorcontrib>Pillai, Manoj R.</creatorcontrib><creatorcontrib>Barnett, Scott A.</creatorcontrib><title>Modeling electrochemical partial oxidation of methane for cogeneration of electricity and syngas in solid-oxide fuel cells</title><title>Journal of power sources</title><description>This paper uses computational models to evaluate strategies for scaling electrochemical partial oxidation (EPOX) processes from the laboratory scale to practical application. In addition to producing electrical energy alone, solid-oxide fuel cells (SOFC) can be operated with hydrocarbon fuel streams to produce synthesis gas (H 2 and CO) as well. SOFC systems are usually operated to consume most of the fuel and produce electricity. However, by operating with a hydrocarbon fuel at relatively high flow rates, the exhaust-gas composition can be predominantly syngas. In this case the steam (and CO 2), produced from electrochemical and thermal reactions, reacts to reform the hydrocarbon fuel within the catalytic anode support structure. A practical limitation of electrochemical partial oxidation operation is the fact that carbon tends to deposit on Ni-based anode catalysts. The present paper explores the use of barrier layers to prevent carbon deposits. The results show that a tubular cell can be designed to deliver syngas and electricity using methane as the primary fuel.</description><subject>Applied sciences</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Cogeneration</subject><subject>Combined power plants</subject><subject>Electricity</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>EPOX</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Hydrocarbon fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Methane</subject><subject>Modeling</subject><subject>Oxidation</subject><subject>Partial oxidation</subject><subject>Scale (corrosion)</subject><subject>SOFC</subject><subject>Solid oxide fuel cells</subject><subject>Syngas</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvGyEQhVHVSnWd_IWKS9VedjssGPAtUZS2kVLl0pwRgcHBWoMD66TOry-W0xzb0xz45j3mPUI-MugZMPl13a-3-anmXekHAN2D6EHJN2TGtOLdoBaLt2QGXOlOqQV_Tz7UugYAxhTMyPPP7HGMaUVxRDeV7O5xE50d6daWKbaZf0dvp5gTzYFucLq3CWnIhbq8woTl9e0oEF2c9tQmT-s-rWylMdGax-i7g1Db3OFIHY5jPSHvgh0rnr7MObn9dvnr4kd3ffP96uL8unNC6KkLHjQXQQmwd2HJnPNDUEoNlnGtgwsK5B0Tkgfu0Grn1cCZWC41chlsYI7Pyeej7rbkhx3WyWxiPfygHZJ31eilZBokh0Z--SfJmi9bMBC6ofKIupJrLRjMtsSNLXvDwBxqMWvztxZzqMWAMK2WtvjpxcPWFnMoNrlYX7cHkBq4Fo07O3LYonmMWEx1EZNDH0vL2fgc_2f1B0Sgqew</recordid><startdate>20080815</startdate><enddate>20080815</enddate><creator>Zhu, Huayang</creator><creator>Kee, Robert J.</creator><creator>Pillai, Manoj R.</creator><creator>Barnett, Scott A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20080815</creationdate><title>Modeling electrochemical partial oxidation of methane for cogeneration of electricity and syngas in solid-oxide fuel cells</title><author>Zhu, Huayang ; Kee, Robert J. ; Pillai, Manoj R. ; Barnett, Scott A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-fd0834f740abf91ccd2f7772a1388fcf706b1463f3cea8cd72314998e36faf1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Cogeneration</topic><topic>Combined power plants</topic><topic>Electricity</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>EPOX</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Hydrocarbon fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Methane</topic><topic>Modeling</topic><topic>Oxidation</topic><topic>Partial oxidation</topic><topic>Scale (corrosion)</topic><topic>SOFC</topic><topic>Solid oxide fuel cells</topic><topic>Syngas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Huayang</creatorcontrib><creatorcontrib>Kee, Robert J.</creatorcontrib><creatorcontrib>Pillai, Manoj R.</creatorcontrib><creatorcontrib>Barnett, Scott A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Huayang</au><au>Kee, Robert J.</au><au>Pillai, Manoj R.</au><au>Barnett, Scott A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling electrochemical partial oxidation of methane for cogeneration of electricity and syngas in solid-oxide fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2008-08-15</date><risdate>2008</risdate><volume>183</volume><issue>1</issue><spage>143</spage><epage>150</epage><pages>143-150</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>This paper uses computational models to evaluate strategies for scaling electrochemical partial oxidation (EPOX) processes from the laboratory scale to practical application. In addition to producing electrical energy alone, solid-oxide fuel cells (SOFC) can be operated with hydrocarbon fuel streams to produce synthesis gas (H 2 and CO) as well. SOFC systems are usually operated to consume most of the fuel and produce electricity. However, by operating with a hydrocarbon fuel at relatively high flow rates, the exhaust-gas composition can be predominantly syngas. In this case the steam (and CO 2), produced from electrochemical and thermal reactions, reacts to reform the hydrocarbon fuel within the catalytic anode support structure. A practical limitation of electrochemical partial oxidation operation is the fact that carbon tends to deposit on Ni-based anode catalysts. The present paper explores the use of barrier layers to prevent carbon deposits. The results show that a tubular cell can be designed to deliver syngas and electricity using methane as the primary fuel.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2008.04.076</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2008-08, Vol.183 (1), p.143-150
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_896180630
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Carbon
Catalysts
Cogeneration
Combined power plants
Electricity
Energy
Energy. Thermal use of fuels
EPOX
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Hydrocarbon fuels
Installations for energy generation and conversion: thermal and electrical energy
Methane
Modeling
Oxidation
Partial oxidation
Scale (corrosion)
SOFC
Solid oxide fuel cells
Syngas
title Modeling electrochemical partial oxidation of methane for cogeneration of electricity and syngas in solid-oxide fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20electrochemical%20partial%20oxidation%20of%20methane%20for%20cogeneration%20of%20electricity%20and%20syngas%20in%20solid-oxide%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Zhu,%20Huayang&rft.date=2008-08-15&rft.volume=183&rft.issue=1&rft.spage=143&rft.epage=150&rft.pages=143-150&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2008.04.076&rft_dat=%3Cproquest_cross%3E1777151048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777151048&rft_id=info:pmid/&rft_els_id=S0378775308009452&rfr_iscdi=true