Recent advancements in the gas-phase MicroChemLab

Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2006-06, Vol.6 (3), p.784-795
Hauptverfasser: Lewis, P.R., Manginell, P., Adkins, D.R., Kottenstette, R.J., Wheeler, D.R., Sokolowski, S.S., Trudell, D.E., Byrnes, J.E., Okandan, M., Bauer, J.M., Manley, R.G., Frye-Mason, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 795
container_issue 3
container_start_page 784
container_title IEEE sensors journal
container_volume 6
creator Lewis, P.R.
Manginell, P.
Adkins, D.R.
Kottenstette, R.J.
Wheeler, D.R.
Sokolowski, S.S.
Trudell, D.E.
Byrnes, J.E.
Okandan, M.
Bauer, J.M.
Manley, R.G.
Frye-Mason, C.
description Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mandate microfabrication of the key analytical system components. In the fielded system, hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal, or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micro-preconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines, and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor or a magnetically-actuated pivot plate resonator
doi_str_mv 10.1109/JSEN.2006.874495
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896180475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1634431</ieee_id><sourcerecordid>896180475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9f1d6d3de9ffdb3596b1626a8f6631c7ed4d952830a11fd97ab1f393ca8a4ee73</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb3gpvgQlepczPvpZT6oir4AHfDJHPHprRJzaSC_96ECIILV_csvnPhfIQcA50AUHNx9zx7mGSUyolWnBuxQ0YghE5Bcb3bZ0ZTztTbPjmIcUkpGCXUiMATFli1ifOfripw3eWYlFXSLjB5dzHdLFzE5L4smnq6wPXc5YdkL7hVxKOfOyavV7OX6U06f7y-nV7O04IJ1qYmgJeeeTQh-JwJI3OQmXQ6SMmgUOi5NyLTjDqA4I1yOQRmWOG044iKjcn58HfT1B9bjK1dl7HA1cpVWG-j1UaCplyJjjz7l8w0FVrSrANP_4DLettU3QqrpTScK846iA5QNznGBoPdNOXaNV8WqO1V21617VXbQXVXORkqJSL-4pJxzoB9A7sheK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866944743</pqid></control><display><type>article</type><title>Recent advancements in the gas-phase MicroChemLab</title><source>IEEE Electronic Library (IEL)</source><creator>Lewis, P.R. ; Manginell, P. ; Adkins, D.R. ; Kottenstette, R.J. ; Wheeler, D.R. ; Sokolowski, S.S. ; Trudell, D.E. ; Byrnes, J.E. ; Okandan, M. ; Bauer, J.M. ; Manley, R.G. ; Frye-Mason, C.</creator><creatorcontrib>Lewis, P.R. ; Manginell, P. ; Adkins, D.R. ; Kottenstette, R.J. ; Wheeler, D.R. ; Sokolowski, S.S. ; Trudell, D.E. ; Byrnes, J.E. ; Okandan, M. ; Bauer, J.M. ; Manley, R.G. ; Frye-Mason, C.</creatorcontrib><description>Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mandate microfabrication of the key analytical system components. In the fielded system, hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal, or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micro-preconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines, and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor or a magnetically-actuated pivot plate resonator</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2006.874495</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic arrays ; Acoustic detection microanalytical system ; Acoustic signal detection ; Acoustic waves ; Arrays ; Budgeting ; Channels ; Chemical analysis ; Chemical industry ; Detectors ; Gas chromatography ; gas-phase analysis ; monolithic integration ; pivot plate resonator ; Plate waves ; preconcentration ; Sensor arrays ; Sensors ; Silicon ; surface acoustic wave array (SAW) ; Surface acoustic waves ; Transfer lines</subject><ispartof>IEEE sensors journal, 2006-06, Vol.6 (3), p.784-795</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9f1d6d3de9ffdb3596b1626a8f6631c7ed4d952830a11fd97ab1f393ca8a4ee73</citedby><cites>FETCH-LOGICAL-c353t-9f1d6d3de9ffdb3596b1626a8f6631c7ed4d952830a11fd97ab1f393ca8a4ee73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1634431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1634431$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lewis, P.R.</creatorcontrib><creatorcontrib>Manginell, P.</creatorcontrib><creatorcontrib>Adkins, D.R.</creatorcontrib><creatorcontrib>Kottenstette, R.J.</creatorcontrib><creatorcontrib>Wheeler, D.R.</creatorcontrib><creatorcontrib>Sokolowski, S.S.</creatorcontrib><creatorcontrib>Trudell, D.E.</creatorcontrib><creatorcontrib>Byrnes, J.E.</creatorcontrib><creatorcontrib>Okandan, M.</creatorcontrib><creatorcontrib>Bauer, J.M.</creatorcontrib><creatorcontrib>Manley, R.G.</creatorcontrib><creatorcontrib>Frye-Mason, C.</creatorcontrib><title>Recent advancements in the gas-phase MicroChemLab</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mandate microfabrication of the key analytical system components. In the fielded system, hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal, or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micro-preconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines, and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor or a magnetically-actuated pivot plate resonator</description><subject>Acoustic arrays</subject><subject>Acoustic detection microanalytical system</subject><subject>Acoustic signal detection</subject><subject>Acoustic waves</subject><subject>Arrays</subject><subject>Budgeting</subject><subject>Channels</subject><subject>Chemical analysis</subject><subject>Chemical industry</subject><subject>Detectors</subject><subject>Gas chromatography</subject><subject>gas-phase analysis</subject><subject>monolithic integration</subject><subject>pivot plate resonator</subject><subject>Plate waves</subject><subject>preconcentration</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Silicon</subject><subject>surface acoustic wave array (SAW)</subject><subject>Surface acoustic waves</subject><subject>Transfer lines</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLw0AUhQdRsFb3gpvgQlepczPvpZT6oir4AHfDJHPHprRJzaSC_96ECIILV_csvnPhfIQcA50AUHNx9zx7mGSUyolWnBuxQ0YghE5Bcb3bZ0ZTztTbPjmIcUkpGCXUiMATFli1ifOfripw3eWYlFXSLjB5dzHdLFzE5L4smnq6wPXc5YdkL7hVxKOfOyavV7OX6U06f7y-nV7O04IJ1qYmgJeeeTQh-JwJI3OQmXQ6SMmgUOi5NyLTjDqA4I1yOQRmWOG044iKjcn58HfT1B9bjK1dl7HA1cpVWG-j1UaCplyJjjz7l8w0FVrSrANP_4DLettU3QqrpTScK846iA5QNznGBoPdNOXaNV8WqO1V21617VXbQXVXORkqJSL-4pJxzoB9A7sheK0</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Lewis, P.R.</creator><creator>Manginell, P.</creator><creator>Adkins, D.R.</creator><creator>Kottenstette, R.J.</creator><creator>Wheeler, D.R.</creator><creator>Sokolowski, S.S.</creator><creator>Trudell, D.E.</creator><creator>Byrnes, J.E.</creator><creator>Okandan, M.</creator><creator>Bauer, J.M.</creator><creator>Manley, R.G.</creator><creator>Frye-Mason, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20060601</creationdate><title>Recent advancements in the gas-phase MicroChemLab</title><author>Lewis, P.R. ; Manginell, P. ; Adkins, D.R. ; Kottenstette, R.J. ; Wheeler, D.R. ; Sokolowski, S.S. ; Trudell, D.E. ; Byrnes, J.E. ; Okandan, M. ; Bauer, J.M. ; Manley, R.G. ; Frye-Mason, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9f1d6d3de9ffdb3596b1626a8f6631c7ed4d952830a11fd97ab1f393ca8a4ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustic arrays</topic><topic>Acoustic detection microanalytical system</topic><topic>Acoustic signal detection</topic><topic>Acoustic waves</topic><topic>Arrays</topic><topic>Budgeting</topic><topic>Channels</topic><topic>Chemical analysis</topic><topic>Chemical industry</topic><topic>Detectors</topic><topic>Gas chromatography</topic><topic>gas-phase analysis</topic><topic>monolithic integration</topic><topic>pivot plate resonator</topic><topic>Plate waves</topic><topic>preconcentration</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Silicon</topic><topic>surface acoustic wave array (SAW)</topic><topic>Surface acoustic waves</topic><topic>Transfer lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, P.R.</creatorcontrib><creatorcontrib>Manginell, P.</creatorcontrib><creatorcontrib>Adkins, D.R.</creatorcontrib><creatorcontrib>Kottenstette, R.J.</creatorcontrib><creatorcontrib>Wheeler, D.R.</creatorcontrib><creatorcontrib>Sokolowski, S.S.</creatorcontrib><creatorcontrib>Trudell, D.E.</creatorcontrib><creatorcontrib>Byrnes, J.E.</creatorcontrib><creatorcontrib>Okandan, M.</creatorcontrib><creatorcontrib>Bauer, J.M.</creatorcontrib><creatorcontrib>Manley, R.G.</creatorcontrib><creatorcontrib>Frye-Mason, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lewis, P.R.</au><au>Manginell, P.</au><au>Adkins, D.R.</au><au>Kottenstette, R.J.</au><au>Wheeler, D.R.</au><au>Sokolowski, S.S.</au><au>Trudell, D.E.</au><au>Byrnes, J.E.</au><au>Okandan, M.</au><au>Bauer, J.M.</au><au>Manley, R.G.</au><au>Frye-Mason, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advancements in the gas-phase MicroChemLab</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>6</volume><issue>3</issue><spage>784</spage><epage>795</epage><pages>784-795</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mandate microfabrication of the key analytical system components. In the fielded system, hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal, or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micro-preconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines, and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor or a magnetically-actuated pivot plate resonator</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2006.874495</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2006-06, Vol.6 (3), p.784-795
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_miscellaneous_896180475
source IEEE Electronic Library (IEL)
subjects Acoustic arrays
Acoustic detection microanalytical system
Acoustic signal detection
Acoustic waves
Arrays
Budgeting
Channels
Chemical analysis
Chemical industry
Detectors
Gas chromatography
gas-phase analysis
monolithic integration
pivot plate resonator
Plate waves
preconcentration
Sensor arrays
Sensors
Silicon
surface acoustic wave array (SAW)
Surface acoustic waves
Transfer lines
title Recent advancements in the gas-phase MicroChemLab
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advancements%20in%20the%20gas-phase%20MicroChemLab&rft.jtitle=IEEE%20sensors%20journal&rft.au=Lewis,%20P.R.&rft.date=2006-06-01&rft.volume=6&rft.issue=3&rft.spage=784&rft.epage=795&rft.pages=784-795&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2006.874495&rft_dat=%3Cproquest_RIE%3E896180475%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866944743&rft_id=info:pmid/&rft_ieee_id=1634431&rfr_iscdi=true