Recent advancements in the gas-phase MicroChemLab
Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mand...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2006-06, Vol.6 (3), p.784-795 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 795 |
---|---|
container_issue | 3 |
container_start_page | 784 |
container_title | IEEE sensors journal |
container_volume | 6 |
creator | Lewis, P.R. Manginell, P. Adkins, D.R. Kottenstette, R.J. Wheeler, D.R. Sokolowski, S.S. Trudell, D.E. Byrnes, J.E. Okandan, M. Bauer, J.M. Manley, R.G. Frye-Mason, C. |
description | Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mandate microfabrication of the key analytical system components. In the fielded system, hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal, or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micro-preconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines, and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor or a magnetically-actuated pivot plate resonator |
doi_str_mv | 10.1109/JSEN.2006.874495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896180475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1634431</ieee_id><sourcerecordid>896180475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9f1d6d3de9ffdb3596b1626a8f6631c7ed4d952830a11fd97ab1f393ca8a4ee73</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb3gpvgQlepczPvpZT6oir4AHfDJHPHprRJzaSC_96ECIILV_csvnPhfIQcA50AUHNx9zx7mGSUyolWnBuxQ0YghE5Bcb3bZ0ZTztTbPjmIcUkpGCXUiMATFli1ifOfripw3eWYlFXSLjB5dzHdLFzE5L4smnq6wPXc5YdkL7hVxKOfOyavV7OX6U06f7y-nV7O04IJ1qYmgJeeeTQh-JwJI3OQmXQ6SMmgUOi5NyLTjDqA4I1yOQRmWOG044iKjcn58HfT1B9bjK1dl7HA1cpVWG-j1UaCplyJjjz7l8w0FVrSrANP_4DLettU3QqrpTScK846iA5QNznGBoPdNOXaNV8WqO1V21617VXbQXVXORkqJSL-4pJxzoB9A7sheK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866944743</pqid></control><display><type>article</type><title>Recent advancements in the gas-phase MicroChemLab</title><source>IEEE Electronic Library (IEL)</source><creator>Lewis, P.R. ; Manginell, P. ; Adkins, D.R. ; Kottenstette, R.J. ; Wheeler, D.R. ; Sokolowski, S.S. ; Trudell, D.E. ; Byrnes, J.E. ; Okandan, M. ; Bauer, J.M. ; Manley, R.G. ; Frye-Mason, C.</creator><creatorcontrib>Lewis, P.R. ; Manginell, P. ; Adkins, D.R. ; Kottenstette, R.J. ; Wheeler, D.R. ; Sokolowski, S.S. ; Trudell, D.E. ; Byrnes, J.E. ; Okandan, M. ; Bauer, J.M. ; Manley, R.G. ; Frye-Mason, C.</creatorcontrib><description>Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mandate microfabrication of the key analytical system components. In the fielded system, hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal, or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micro-preconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines, and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor or a magnetically-actuated pivot plate resonator</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2006.874495</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic arrays ; Acoustic detection microanalytical system ; Acoustic signal detection ; Acoustic waves ; Arrays ; Budgeting ; Channels ; Chemical analysis ; Chemical industry ; Detectors ; Gas chromatography ; gas-phase analysis ; monolithic integration ; pivot plate resonator ; Plate waves ; preconcentration ; Sensor arrays ; Sensors ; Silicon ; surface acoustic wave array (SAW) ; Surface acoustic waves ; Transfer lines</subject><ispartof>IEEE sensors journal, 2006-06, Vol.6 (3), p.784-795</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9f1d6d3de9ffdb3596b1626a8f6631c7ed4d952830a11fd97ab1f393ca8a4ee73</citedby><cites>FETCH-LOGICAL-c353t-9f1d6d3de9ffdb3596b1626a8f6631c7ed4d952830a11fd97ab1f393ca8a4ee73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1634431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1634431$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lewis, P.R.</creatorcontrib><creatorcontrib>Manginell, P.</creatorcontrib><creatorcontrib>Adkins, D.R.</creatorcontrib><creatorcontrib>Kottenstette, R.J.</creatorcontrib><creatorcontrib>Wheeler, D.R.</creatorcontrib><creatorcontrib>Sokolowski, S.S.</creatorcontrib><creatorcontrib>Trudell, D.E.</creatorcontrib><creatorcontrib>Byrnes, J.E.</creatorcontrib><creatorcontrib>Okandan, M.</creatorcontrib><creatorcontrib>Bauer, J.M.</creatorcontrib><creatorcontrib>Manley, R.G.</creatorcontrib><creatorcontrib>Frye-Mason, C.</creatorcontrib><title>Recent advancements in the gas-phase MicroChemLab</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mandate microfabrication of the key analytical system components. In the fielded system, hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal, or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micro-preconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines, and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor or a magnetically-actuated pivot plate resonator</description><subject>Acoustic arrays</subject><subject>Acoustic detection microanalytical system</subject><subject>Acoustic signal detection</subject><subject>Acoustic waves</subject><subject>Arrays</subject><subject>Budgeting</subject><subject>Channels</subject><subject>Chemical analysis</subject><subject>Chemical industry</subject><subject>Detectors</subject><subject>Gas chromatography</subject><subject>gas-phase analysis</subject><subject>monolithic integration</subject><subject>pivot plate resonator</subject><subject>Plate waves</subject><subject>preconcentration</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Silicon</subject><subject>surface acoustic wave array (SAW)</subject><subject>Surface acoustic waves</subject><subject>Transfer lines</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLw0AUhQdRsFb3gpvgQlepczPvpZT6oir4AHfDJHPHprRJzaSC_96ECIILV_csvnPhfIQcA50AUHNx9zx7mGSUyolWnBuxQ0YghE5Bcb3bZ0ZTztTbPjmIcUkpGCXUiMATFli1ifOfripw3eWYlFXSLjB5dzHdLFzE5L4smnq6wPXc5YdkL7hVxKOfOyavV7OX6U06f7y-nV7O04IJ1qYmgJeeeTQh-JwJI3OQmXQ6SMmgUOi5NyLTjDqA4I1yOQRmWOG044iKjcn58HfT1B9bjK1dl7HA1cpVWG-j1UaCplyJjjz7l8w0FVrSrANP_4DLettU3QqrpTScK846iA5QNznGBoPdNOXaNV8WqO1V21617VXbQXVXORkqJSL-4pJxzoB9A7sheK0</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Lewis, P.R.</creator><creator>Manginell, P.</creator><creator>Adkins, D.R.</creator><creator>Kottenstette, R.J.</creator><creator>Wheeler, D.R.</creator><creator>Sokolowski, S.S.</creator><creator>Trudell, D.E.</creator><creator>Byrnes, J.E.</creator><creator>Okandan, M.</creator><creator>Bauer, J.M.</creator><creator>Manley, R.G.</creator><creator>Frye-Mason, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20060601</creationdate><title>Recent advancements in the gas-phase MicroChemLab</title><author>Lewis, P.R. ; Manginell, P. ; Adkins, D.R. ; Kottenstette, R.J. ; Wheeler, D.R. ; Sokolowski, S.S. ; Trudell, D.E. ; Byrnes, J.E. ; Okandan, M. ; Bauer, J.M. ; Manley, R.G. ; Frye-Mason, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9f1d6d3de9ffdb3596b1626a8f6631c7ed4d952830a11fd97ab1f393ca8a4ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustic arrays</topic><topic>Acoustic detection microanalytical system</topic><topic>Acoustic signal detection</topic><topic>Acoustic waves</topic><topic>Arrays</topic><topic>Budgeting</topic><topic>Channels</topic><topic>Chemical analysis</topic><topic>Chemical industry</topic><topic>Detectors</topic><topic>Gas chromatography</topic><topic>gas-phase analysis</topic><topic>monolithic integration</topic><topic>pivot plate resonator</topic><topic>Plate waves</topic><topic>preconcentration</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Silicon</topic><topic>surface acoustic wave array (SAW)</topic><topic>Surface acoustic waves</topic><topic>Transfer lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, P.R.</creatorcontrib><creatorcontrib>Manginell, P.</creatorcontrib><creatorcontrib>Adkins, D.R.</creatorcontrib><creatorcontrib>Kottenstette, R.J.</creatorcontrib><creatorcontrib>Wheeler, D.R.</creatorcontrib><creatorcontrib>Sokolowski, S.S.</creatorcontrib><creatorcontrib>Trudell, D.E.</creatorcontrib><creatorcontrib>Byrnes, J.E.</creatorcontrib><creatorcontrib>Okandan, M.</creatorcontrib><creatorcontrib>Bauer, J.M.</creatorcontrib><creatorcontrib>Manley, R.G.</creatorcontrib><creatorcontrib>Frye-Mason, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lewis, P.R.</au><au>Manginell, P.</au><au>Adkins, D.R.</au><au>Kottenstette, R.J.</au><au>Wheeler, D.R.</au><au>Sokolowski, S.S.</au><au>Trudell, D.E.</au><au>Byrnes, J.E.</au><au>Okandan, M.</au><au>Bauer, J.M.</au><au>Manley, R.G.</au><au>Frye-Mason, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advancements in the gas-phase MicroChemLab</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>6</volume><issue>3</issue><spage>784</spage><epage>795</epage><pages>784-795</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mandate microfabrication of the key analytical system components. In the fielded system, hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal, or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micro-preconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines, and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor or a magnetically-actuated pivot plate resonator</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2006.874495</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2006-06, Vol.6 (3), p.784-795 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_miscellaneous_896180475 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic arrays Acoustic detection microanalytical system Acoustic signal detection Acoustic waves Arrays Budgeting Channels Chemical analysis Chemical industry Detectors Gas chromatography gas-phase analysis monolithic integration pivot plate resonator Plate waves preconcentration Sensor arrays Sensors Silicon surface acoustic wave array (SAW) Surface acoustic waves Transfer lines |
title | Recent advancements in the gas-phase MicroChemLab |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advancements%20in%20the%20gas-phase%20MicroChemLab&rft.jtitle=IEEE%20sensors%20journal&rft.au=Lewis,%20P.R.&rft.date=2006-06-01&rft.volume=6&rft.issue=3&rft.spage=784&rft.epage=795&rft.pages=784-795&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2006.874495&rft_dat=%3Cproquest_RIE%3E896180475%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866944743&rft_id=info:pmid/&rft_ieee_id=1634431&rfr_iscdi=true |