A multi-grained distributed implementation of the parallel Block Conjugate Gradient algorithm

The Block Conjugate Gradient algorithm (Block‐CG) was developed to solve sparse linear systems of equations that have multiple right‐hand sides. We have adapted it for use in heterogeneous, geographically distributed, parallel architectures. Once the main operations of the Block‐CG (Tasks) have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2010-10, Vol.22 (15), p.2053-2072
Hauptverfasser: Murli, A., D'Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2072
container_issue 15
container_start_page 2053
container_title Concurrency and computation
container_volume 22
creator Murli, A.
D'Amore, L.
Laccetti, G.
Gregoretti, F.
Oliva, G.
description The Block Conjugate Gradient algorithm (Block‐CG) was developed to solve sparse linear systems of equations that have multiple right‐hand sides. We have adapted it for use in heterogeneous, geographically distributed, parallel architectures. Once the main operations of the Block‐CG (Tasks) have been collected into smaller groups (subjobs), each subjob is matched by the middleware MJMS (MPI Jobs Management System) with a suitable resource selected among those which are available. Moreover, within each subjob, concurrency is introduced at two different levels and with two different granularities: the coarse‐grained parallelism to perform independent tasks and the fine‐grained parallelism within the execution of a task. We refer to this algorithm as to multi‐grained distributed implementation of the parallel Block‐CG. We compare the performance of a parallel implementation with the one of the distributed implementation running on a variety of Grid computing environments. The middleware MJMS—developed by some of the authors and built on top of Globus Toolkit and Condor‐G—was used for co‐allocation, synchronization, scheduling and resource selection. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cpe.1548
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896176716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896176716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3358-d36f593a538201e0f7c414384b11cf39bf053c9d818a0871a5e6e2e12e9f41403</originalsourceid><addsrcrecordid>eNp10E1LAzEQgOFFFKxV8Cfkppetmc1-Hutaq1BUqOJJQro7adNmP0yyaP-9WyoFD55mDs_M4fW8S6AjoDS4KVocQRSmR94AIhb4NGbh8WEP4lPvzNo1pQCUwcD7GJOq0075SyNUjSUplXVGLTrX76pqNVZYO-FUU5NGErdC0gojtEZNbnVTbEje1OtuKRySqRGl6jURetkY5VbVuXcihbZ48TuH3tv95DV_8GfP08d8PPMLxqLUL1kso4yJiKUBBaQyKUIIWRouAArJsoWkESuyMoVU0DQBEWGMAUKAmewhZUPvav-3Nc1nh9bxStkCtRY1Np3laRZDEicQ9_J6LwvTWGtQ8taoSpgtB8p3AXkfkO8C9tTf0y-lcfuv4_nL5K_vC-L3wQuz4XHCkoi_P035fH4X9uchz9gPytiAWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896176716</pqid></control><display><type>article</type><title>A multi-grained distributed implementation of the parallel Block Conjugate Gradient algorithm</title><source>Wiley Journals</source><creator>Murli, A. ; D'Amore, L. ; Laccetti, G. ; Gregoretti, F. ; Oliva, G.</creator><creatorcontrib>Murli, A. ; D'Amore, L. ; Laccetti, G. ; Gregoretti, F. ; Oliva, G.</creatorcontrib><description>The Block Conjugate Gradient algorithm (Block‐CG) was developed to solve sparse linear systems of equations that have multiple right‐hand sides. We have adapted it for use in heterogeneous, geographically distributed, parallel architectures. Once the main operations of the Block‐CG (Tasks) have been collected into smaller groups (subjobs), each subjob is matched by the middleware MJMS (MPI Jobs Management System) with a suitable resource selected among those which are available. Moreover, within each subjob, concurrency is introduced at two different levels and with two different granularities: the coarse‐grained parallelism to perform independent tasks and the fine‐grained parallelism within the execution of a task. We refer to this algorithm as to multi‐grained distributed implementation of the parallel Block‐CG. We compare the performance of a parallel implementation with the one of the distributed implementation running on a variety of Grid computing environments. The middleware MJMS—developed by some of the authors and built on top of Globus Toolkit and Condor‐G—was used for co‐allocation, synchronization, scheduling and resource selection. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1532-0626</identifier><identifier>ISSN: 1532-0634</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.1548</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Block Conjugate Gradient ; Blocking ; Concurrency ; Conjugate gradients ; Linear systems ; Mathematical analysis ; Middleware ; multi-grained parallelism ; parallel and distributed algorithm ; Tasks</subject><ispartof>Concurrency and computation, 2010-10, Vol.22 (15), p.2053-2072</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3358-d36f593a538201e0f7c414384b11cf39bf053c9d818a0871a5e6e2e12e9f41403</citedby><cites>FETCH-LOGICAL-c3358-d36f593a538201e0f7c414384b11cf39bf053c9d818a0871a5e6e2e12e9f41403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.1548$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.1548$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Murli, A.</creatorcontrib><creatorcontrib>D'Amore, L.</creatorcontrib><creatorcontrib>Laccetti, G.</creatorcontrib><creatorcontrib>Gregoretti, F.</creatorcontrib><creatorcontrib>Oliva, G.</creatorcontrib><title>A multi-grained distributed implementation of the parallel Block Conjugate Gradient algorithm</title><title>Concurrency and computation</title><addtitle>Concurrency Computat.: Pract. Exper</addtitle><description>The Block Conjugate Gradient algorithm (Block‐CG) was developed to solve sparse linear systems of equations that have multiple right‐hand sides. We have adapted it for use in heterogeneous, geographically distributed, parallel architectures. Once the main operations of the Block‐CG (Tasks) have been collected into smaller groups (subjobs), each subjob is matched by the middleware MJMS (MPI Jobs Management System) with a suitable resource selected among those which are available. Moreover, within each subjob, concurrency is introduced at two different levels and with two different granularities: the coarse‐grained parallelism to perform independent tasks and the fine‐grained parallelism within the execution of a task. We refer to this algorithm as to multi‐grained distributed implementation of the parallel Block‐CG. We compare the performance of a parallel implementation with the one of the distributed implementation running on a variety of Grid computing environments. The middleware MJMS—developed by some of the authors and built on top of Globus Toolkit and Condor‐G—was used for co‐allocation, synchronization, scheduling and resource selection. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Block Conjugate Gradient</subject><subject>Blocking</subject><subject>Concurrency</subject><subject>Conjugate gradients</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Middleware</subject><subject>multi-grained parallelism</subject><subject>parallel and distributed algorithm</subject><subject>Tasks</subject><issn>1532-0626</issn><issn>1532-0634</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQgOFFFKxV8Cfkppetmc1-Hutaq1BUqOJJQro7adNmP0yyaP-9WyoFD55mDs_M4fW8S6AjoDS4KVocQRSmR94AIhb4NGbh8WEP4lPvzNo1pQCUwcD7GJOq0075SyNUjSUplXVGLTrX76pqNVZYO-FUU5NGErdC0gojtEZNbnVTbEje1OtuKRySqRGl6jURetkY5VbVuXcihbZ48TuH3tv95DV_8GfP08d8PPMLxqLUL1kso4yJiKUBBaQyKUIIWRouAArJsoWkESuyMoVU0DQBEWGMAUKAmewhZUPvav-3Nc1nh9bxStkCtRY1Np3laRZDEicQ9_J6LwvTWGtQ8taoSpgtB8p3AXkfkO8C9tTf0y-lcfuv4_nL5K_vC-L3wQuz4XHCkoi_P035fH4X9uchz9gPytiAWw</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Murli, A.</creator><creator>D'Amore, L.</creator><creator>Laccetti, G.</creator><creator>Gregoretti, F.</creator><creator>Oliva, G.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201010</creationdate><title>A multi-grained distributed implementation of the parallel Block Conjugate Gradient algorithm</title><author>Murli, A. ; D'Amore, L. ; Laccetti, G. ; Gregoretti, F. ; Oliva, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3358-d36f593a538201e0f7c414384b11cf39bf053c9d818a0871a5e6e2e12e9f41403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Block Conjugate Gradient</topic><topic>Blocking</topic><topic>Concurrency</topic><topic>Conjugate gradients</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Middleware</topic><topic>multi-grained parallelism</topic><topic>parallel and distributed algorithm</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murli, A.</creatorcontrib><creatorcontrib>D'Amore, L.</creatorcontrib><creatorcontrib>Laccetti, G.</creatorcontrib><creatorcontrib>Gregoretti, F.</creatorcontrib><creatorcontrib>Oliva, G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murli, A.</au><au>D'Amore, L.</au><au>Laccetti, G.</au><au>Gregoretti, F.</au><au>Oliva, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-grained distributed implementation of the parallel Block Conjugate Gradient algorithm</atitle><jtitle>Concurrency and computation</jtitle><addtitle>Concurrency Computat.: Pract. Exper</addtitle><date>2010-10</date><risdate>2010</risdate><volume>22</volume><issue>15</issue><spage>2053</spage><epage>2072</epage><pages>2053-2072</pages><issn>1532-0626</issn><issn>1532-0634</issn><eissn>1532-0634</eissn><abstract>The Block Conjugate Gradient algorithm (Block‐CG) was developed to solve sparse linear systems of equations that have multiple right‐hand sides. We have adapted it for use in heterogeneous, geographically distributed, parallel architectures. Once the main operations of the Block‐CG (Tasks) have been collected into smaller groups (subjobs), each subjob is matched by the middleware MJMS (MPI Jobs Management System) with a suitable resource selected among those which are available. Moreover, within each subjob, concurrency is introduced at two different levels and with two different granularities: the coarse‐grained parallelism to perform independent tasks and the fine‐grained parallelism within the execution of a task. We refer to this algorithm as to multi‐grained distributed implementation of the parallel Block‐CG. We compare the performance of a parallel implementation with the one of the distributed implementation running on a variety of Grid computing environments. The middleware MJMS—developed by some of the authors and built on top of Globus Toolkit and Condor‐G—was used for co‐allocation, synchronization, scheduling and resource selection. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cpe.1548</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2010-10, Vol.22 (15), p.2053-2072
issn 1532-0626
1532-0634
1532-0634
language eng
recordid cdi_proquest_miscellaneous_896176716
source Wiley Journals
subjects Algorithms
Block Conjugate Gradient
Blocking
Concurrency
Conjugate gradients
Linear systems
Mathematical analysis
Middleware
multi-grained parallelism
parallel and distributed algorithm
Tasks
title A multi-grained distributed implementation of the parallel Block Conjugate Gradient algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-grained%20distributed%20implementation%20of%20the%20parallel%20Block%20Conjugate%20Gradient%20algorithm&rft.jtitle=Concurrency%20and%20computation&rft.au=Murli,%20A.&rft.date=2010-10&rft.volume=22&rft.issue=15&rft.spage=2053&rft.epage=2072&rft.pages=2053-2072&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.1548&rft_dat=%3Cproquest_cross%3E896176716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896176716&rft_id=info:pmid/&rfr_iscdi=true