Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid

Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental thermal and fluid science 2011-09, Vol.35 (6), p.960-970
Hauptverfasser: Peng, Hao, Ding, Guoliang, Hu, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 970
container_issue 6
container_start_page 960
container_title Experimental thermal and fluid science
container_volume 35
creator Peng, Hao
Ding, Guoliang
Hu, Haitao
description Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6 μm. Test conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m −2, surfactant concentrations from 0 to 5000 ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0 wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio, SER) are in the ranges of 1.12–1.67, 0.94–1.39, and 0.85–1.29 for SDS, CTAB and Span-80, respectively, and the values of SER are in the order of SDS > CTAB > Span-80, which is opposite to the order of surfactant density values. The SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000 ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.
doi_str_mv 10.1016/j.expthermflusci.2011.01.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896173911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177711000276</els_id><sourcerecordid>896173911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-f2946ac3791e566975a7937efde7d4393b2dbc9ecd613fa06377eafb2b1058f53</originalsourceid><addsrcrecordid>eNqNkUGLFDEQhYMoOK7-hxwUvfSYSncnHfAiy64rLHjRc0gnld0MPcmYpBf996aZRdiLCAWB4qv3KvUIeQtsDwzEx8Mef53qPeajX9Ziw54zgD3bSjwjO5ik6jifxHOyY5MaOpBSviSvSjkwxiYObEfclfdoK02eljV7Y6uJlRrnQg0PWGiKNK52QVORnlJa6JzCEuIdvW8tWrOJxWPexjP6HO6wdWo3m4KORhNTWyy41-SFN0vBN4_vBflxffX98qa7_fbl6-Xn286Ow1g7z9UgjO2lAhyFUHI0UvUSvUPphl71M3ezVWidgN4bJnop0fiZz8DGyY_9BXl_1j3l9HPFUvUxFIvLYiKmtehJCZC9Amjkh3-SIKRUHAQXDf10Rm1OpbRf6lMOR5N_a2B6i0Ef9NMY9BaDZltt4-8enUyxZvHtPjaUvxp84CNrLo27PnPYDvQQMOumhNGiC7kFpF0K_2f4B2FHqIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677921626</pqid></control><display><type>article</type><title>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid</title><source>Elsevier ScienceDirect Journals</source><creator>Peng, Hao ; Ding, Guoliang ; Hu, Haitao</creator><creatorcontrib>Peng, Hao ; Ding, Guoliang ; Hu, Haitao</creatorcontrib><description>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6 μm. Test conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m −2, surfactant concentrations from 0 to 5000 ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0 wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio, SER) are in the ranges of 1.12–1.67, 0.94–1.39, and 0.85–1.29 for SDS, CTAB and Span-80, respectively, and the values of SER are in the order of SDS &gt; CTAB &gt; Span-80, which is opposite to the order of surfactant density values. The SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000 ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2011.01.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Boiling ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Correlation ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Heat transfer ; Nanocomposites ; Nanofluid ; Nanofluids ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nucleate boiling ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Pools ; Refrigerant ; Refrigerants ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; Surfactant ; Surfactants ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>Experimental thermal and fluid science, 2011-09, Vol.35 (6), p.960-970</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-f2946ac3791e566975a7937efde7d4393b2dbc9ecd613fa06377eafb2b1058f53</citedby><cites>FETCH-LOGICAL-c545t-f2946ac3791e566975a7937efde7d4393b2dbc9ecd613fa06377eafb2b1058f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0894177711000276$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24250263$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Ding, Guoliang</creatorcontrib><creatorcontrib>Hu, Haitao</creatorcontrib><title>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid</title><title>Experimental thermal and fluid science</title><description>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6 μm. Test conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m −2, surfactant concentrations from 0 to 5000 ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0 wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio, SER) are in the ranges of 1.12–1.67, 0.94–1.39, and 0.85–1.29 for SDS, CTAB and Span-80, respectively, and the values of SER are in the order of SDS &gt; CTAB &gt; Span-80, which is opposite to the order of surfactant density values. The SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000 ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Correlation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Nanocomposites</subject><subject>Nanofluid</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nucleate boiling</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Pools</subject><subject>Refrigerant</subject><subject>Refrigerants</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Surfactant</subject><subject>Surfactants</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUGLFDEQhYMoOK7-hxwUvfSYSncnHfAiy64rLHjRc0gnld0MPcmYpBf996aZRdiLCAWB4qv3KvUIeQtsDwzEx8Mef53qPeajX9Ziw54zgD3bSjwjO5ik6jifxHOyY5MaOpBSviSvSjkwxiYObEfclfdoK02eljV7Y6uJlRrnQg0PWGiKNK52QVORnlJa6JzCEuIdvW8tWrOJxWPexjP6HO6wdWo3m4KORhNTWyy41-SFN0vBN4_vBflxffX98qa7_fbl6-Xn286Ow1g7z9UgjO2lAhyFUHI0UvUSvUPphl71M3ezVWidgN4bJnop0fiZz8DGyY_9BXl_1j3l9HPFUvUxFIvLYiKmtehJCZC9Amjkh3-SIKRUHAQXDf10Rm1OpbRf6lMOR5N_a2B6i0Ef9NMY9BaDZltt4-8enUyxZvHtPjaUvxp84CNrLo27PnPYDvQQMOumhNGiC7kFpF0K_2f4B2FHqIk</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Peng, Hao</creator><creator>Ding, Guoliang</creator><creator>Hu, Haitao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110901</creationdate><title>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid</title><author>Peng, Hao ; Ding, Guoliang ; Hu, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-f2946ac3791e566975a7937efde7d4393b2dbc9ecd613fa06377eafb2b1058f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Correlation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Nanocomposites</topic><topic>Nanofluid</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nucleate boiling</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Pools</topic><topic>Refrigerant</topic><topic>Refrigerants</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Surfactant</topic><topic>Surfactants</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Ding, Guoliang</creatorcontrib><creatorcontrib>Hu, Haitao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Hao</au><au>Ding, Guoliang</au><au>Hu, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>35</volume><issue>6</issue><spage>960</spage><epage>970</epage><pages>960-970</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6 μm. Test conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m −2, surfactant concentrations from 0 to 5000 ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0 wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio, SER) are in the ranges of 1.12–1.67, 0.94–1.39, and 0.85–1.29 for SDS, CTAB and Span-80, respectively, and the values of SER are in the order of SDS &gt; CTAB &gt; Span-80, which is opposite to the order of surfactant density values. The SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000 ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2011.01.016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2011-09, Vol.35 (6), p.960-970
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_miscellaneous_896173911
source Elsevier ScienceDirect Journals
subjects Applied sciences
Boiling
Chemistry
Colloidal state and disperse state
Condensed matter: structure, mechanical and thermal properties
Correlation
Energy
Energy. Thermal use of fuels
Exact sciences and technology
General and physical chemistry
Heat transfer
Nanocomposites
Nanofluid
Nanofluids
Nanomaterials
Nanoparticles
Nanostructure
Nucleate boiling
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Pools
Refrigerant
Refrigerants
Refrigerating engineering
Refrigerating engineering. Cryogenics. Food conservation
Surfactant
Surfactants
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
title Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surfactant%20additives%20on%20nucleate%20pool%20boiling%20heat%20transfer%20of%20refrigerant-based%20nanofluid&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Peng,%20Hao&rft.date=2011-09-01&rft.volume=35&rft.issue=6&rft.spage=960&rft.epage=970&rft.pages=960-970&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2011.01.016&rft_dat=%3Cproquest_cross%3E896173911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677921626&rft_id=info:pmid/&rft_els_id=S0894177711000276&rfr_iscdi=true