Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid
Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experimen...
Gespeichert in:
Veröffentlicht in: | Experimental thermal and fluid science 2011-09, Vol.35 (6), p.960-970 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 970 |
---|---|
container_issue | 6 |
container_start_page | 960 |
container_title | Experimental thermal and fluid science |
container_volume | 35 |
creator | Peng, Hao Ding, Guoliang Hu, Haitao |
description | Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6
μm. Test conditions include a saturation pressure of 101.3
kPa, heat fluxes from 10 to 80
kW
m
−2, surfactant concentrations from 0 to 5000
ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0
wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio,
SER) are in the ranges of 1.12–1.67, 0.94–1.39, and 0.85–1.29 for SDS, CTAB and Span-80, respectively, and the values of
SER are in the order of SDS
>
CTAB
>
Span-80, which is opposite to the order of surfactant density values. The
SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000
ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the
SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%. |
doi_str_mv | 10.1016/j.expthermflusci.2011.01.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896173911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177711000276</els_id><sourcerecordid>896173911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-f2946ac3791e566975a7937efde7d4393b2dbc9ecd613fa06377eafb2b1058f53</originalsourceid><addsrcrecordid>eNqNkUGLFDEQhYMoOK7-hxwUvfSYSncnHfAiy64rLHjRc0gnld0MPcmYpBf996aZRdiLCAWB4qv3KvUIeQtsDwzEx8Mef53qPeajX9Ziw54zgD3bSjwjO5ik6jifxHOyY5MaOpBSviSvSjkwxiYObEfclfdoK02eljV7Y6uJlRrnQg0PWGiKNK52QVORnlJa6JzCEuIdvW8tWrOJxWPexjP6HO6wdWo3m4KORhNTWyy41-SFN0vBN4_vBflxffX98qa7_fbl6-Xn286Ow1g7z9UgjO2lAhyFUHI0UvUSvUPphl71M3ezVWidgN4bJnop0fiZz8DGyY_9BXl_1j3l9HPFUvUxFIvLYiKmtehJCZC9Amjkh3-SIKRUHAQXDf10Rm1OpbRf6lMOR5N_a2B6i0Ef9NMY9BaDZltt4-8enUyxZvHtPjaUvxp84CNrLo27PnPYDvQQMOumhNGiC7kFpF0K_2f4B2FHqIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677921626</pqid></control><display><type>article</type><title>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid</title><source>Elsevier ScienceDirect Journals</source><creator>Peng, Hao ; Ding, Guoliang ; Hu, Haitao</creator><creatorcontrib>Peng, Hao ; Ding, Guoliang ; Hu, Haitao</creatorcontrib><description>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6
μm. Test conditions include a saturation pressure of 101.3
kPa, heat fluxes from 10 to 80
kW
m
−2, surfactant concentrations from 0 to 5000
ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0
wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio,
SER) are in the ranges of 1.12–1.67, 0.94–1.39, and 0.85–1.29 for SDS, CTAB and Span-80, respectively, and the values of
SER are in the order of SDS
>
CTAB
>
Span-80, which is opposite to the order of surfactant density values. The
SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000
ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the
SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2011.01.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Boiling ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Correlation ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Heat transfer ; Nanocomposites ; Nanofluid ; Nanofluids ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nucleate boiling ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Pools ; Refrigerant ; Refrigerants ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; Surfactant ; Surfactants ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>Experimental thermal and fluid science, 2011-09, Vol.35 (6), p.960-970</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-f2946ac3791e566975a7937efde7d4393b2dbc9ecd613fa06377eafb2b1058f53</citedby><cites>FETCH-LOGICAL-c545t-f2946ac3791e566975a7937efde7d4393b2dbc9ecd613fa06377eafb2b1058f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0894177711000276$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24250263$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Ding, Guoliang</creatorcontrib><creatorcontrib>Hu, Haitao</creatorcontrib><title>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid</title><title>Experimental thermal and fluid science</title><description>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6
μm. Test conditions include a saturation pressure of 101.3
kPa, heat fluxes from 10 to 80
kW
m
−2, surfactant concentrations from 0 to 5000
ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0
wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio,
SER) are in the ranges of 1.12–1.67, 0.94–1.39, and 0.85–1.29 for SDS, CTAB and Span-80, respectively, and the values of
SER are in the order of SDS
>
CTAB
>
Span-80, which is opposite to the order of surfactant density values. The
SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000
ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the
SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Correlation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Nanocomposites</subject><subject>Nanofluid</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nucleate boiling</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Pools</subject><subject>Refrigerant</subject><subject>Refrigerants</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Surfactant</subject><subject>Surfactants</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUGLFDEQhYMoOK7-hxwUvfSYSncnHfAiy64rLHjRc0gnld0MPcmYpBf996aZRdiLCAWB4qv3KvUIeQtsDwzEx8Mef53qPeajX9Ziw54zgD3bSjwjO5ik6jifxHOyY5MaOpBSviSvSjkwxiYObEfclfdoK02eljV7Y6uJlRrnQg0PWGiKNK52QVORnlJa6JzCEuIdvW8tWrOJxWPexjP6HO6wdWo3m4KORhNTWyy41-SFN0vBN4_vBflxffX98qa7_fbl6-Xn286Ow1g7z9UgjO2lAhyFUHI0UvUSvUPphl71M3ezVWidgN4bJnop0fiZz8DGyY_9BXl_1j3l9HPFUvUxFIvLYiKmtehJCZC9Amjkh3-SIKRUHAQXDf10Rm1OpbRf6lMOR5N_a2B6i0Ef9NMY9BaDZltt4-8enUyxZvHtPjaUvxp84CNrLo27PnPYDvQQMOumhNGiC7kFpF0K_2f4B2FHqIk</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Peng, Hao</creator><creator>Ding, Guoliang</creator><creator>Hu, Haitao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110901</creationdate><title>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid</title><author>Peng, Hao ; Ding, Guoliang ; Hu, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-f2946ac3791e566975a7937efde7d4393b2dbc9ecd613fa06377eafb2b1058f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Correlation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Nanocomposites</topic><topic>Nanofluid</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nucleate boiling</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Pools</topic><topic>Refrigerant</topic><topic>Refrigerants</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Surfactant</topic><topic>Surfactants</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Ding, Guoliang</creatorcontrib><creatorcontrib>Hu, Haitao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Hao</au><au>Ding, Guoliang</au><au>Hu, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>35</volume><issue>6</issue><spage>960</spage><epage>970</epage><pages>960-970</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6
μm. Test conditions include a saturation pressure of 101.3
kPa, heat fluxes from 10 to 80
kW
m
−2, surfactant concentrations from 0 to 5000
ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0
wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio,
SER) are in the ranges of 1.12–1.67, 0.94–1.39, and 0.85–1.29 for SDS, CTAB and Span-80, respectively, and the values of
SER are in the order of SDS
>
CTAB
>
Span-80, which is opposite to the order of surfactant density values. The
SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000
ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the
SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2011.01.016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1777 |
ispartof | Experimental thermal and fluid science, 2011-09, Vol.35 (6), p.960-970 |
issn | 0894-1777 1879-2286 |
language | eng |
recordid | cdi_proquest_miscellaneous_896173911 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Boiling Chemistry Colloidal state and disperse state Condensed matter: structure, mechanical and thermal properties Correlation Energy Energy. Thermal use of fuels Exact sciences and technology General and physical chemistry Heat transfer Nanocomposites Nanofluid Nanofluids Nanomaterials Nanoparticles Nanostructure Nucleate boiling Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Pools Refrigerant Refrigerants Refrigerating engineering Refrigerating engineering. Cryogenics. Food conservation Surfactant Surfactants Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes |
title | Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surfactant%20additives%20on%20nucleate%20pool%20boiling%20heat%20transfer%20of%20refrigerant-based%20nanofluid&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Peng,%20Hao&rft.date=2011-09-01&rft.volume=35&rft.issue=6&rft.spage=960&rft.epage=970&rft.pages=960-970&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2011.01.016&rft_dat=%3Cproquest_cross%3E896173911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677921626&rft_id=info:pmid/&rft_els_id=S0894177711000276&rfr_iscdi=true |