Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method
Recently, anomaly detection (AD) has attracted considerable interest in a wide variety of hyperspectral remote sensing applications. The goal of this unsupervised technique of target detection is to identify the pixels with significantly different spectral signatures from the neighboring background....
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2011-07, Vol.8 (4), p.646-650 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 650 |
---|---|
container_issue | 4 |
container_start_page | 646 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 8 |
creator | Khazai, S. Homayouni, S. Safari, A. Mojaradi, B. |
description | Recently, anomaly detection (AD) has attracted considerable interest in a wide variety of hyperspectral remote sensing applications. The goal of this unsupervised technique of target detection is to identify the pixels with significantly different spectral signatures from the neighboring background. Kernel methods, such as kernel-based support vector data description (SVDD) (K-SVDD), have been presented as the successful approach to AD problems. The most commonly used kernel is the Gaussian kernel function. The main problem using the Gaussian kernel-based AD methods is the optimal setting of sigma. In an attempt to address this problem, this paper proposes a direct and adaptive measure for Gaussian K-SVDD (GK-SVDD). The proposed measure is based on a geometric interpretation of the GK-SVDD. Experimental results are presented on real and synthetically implanted targets of the target detection blind-test data sets. Compared to previous measures, the results demonstrate better performance, particularly for subpixel anomalies. |
doi_str_mv | 10.1109/LGRS.2010.2098842 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896172653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5701654</ieee_id><sourcerecordid>2385782901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-fb9ae317414fd7c5120588b8e562058f57935ba3d2727f83d6c2c23de3f8bea43</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_AiCq6PDyBeghe9dM2zmR7Xt7AiuKt4C2k71Uq3qUkr7Le3ZcWDB0-ZDL8ZGP5RdMTolDGans9vnxZTTocvpymA5FvRhCkFMVWabY-1VLFK4XU32gvhg1IuAfQkWs4at7L1mlxhh3lXuYZUDblbt-hDOzS8rcn9yr5hIBc2YEEGYBsyK2zbVV9IFn3bOt-Rl8E6Tx6we3fFQbRT2jrg4c-7Hz3fXC8v7-L54-395Wwe50LpLi6z1KJgWjJZFjpXjFMFkAGqZKxKpVOhMisKrrkuQRRJznMuChQlZGil2I9ON3tb7z57DJ1ZVSHHurYNuj4YSBOmeaLEIM_-lUxrylPOYKQnf-iH630z3GFAC5AMJAyIbVDuXQgeS9P6amX92jBqxkDMGIgZAzE_gQwzx5uZChF_vdKUJUqKb2EUhb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873841848</pqid></control><display><type>article</type><title>Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method</title><source>IEEE Electronic Library (IEL)</source><creator>Khazai, S. ; Homayouni, S. ; Safari, A. ; Mojaradi, B.</creator><creatorcontrib>Khazai, S. ; Homayouni, S. ; Safari, A. ; Mojaradi, B.</creatorcontrib><description>Recently, anomaly detection (AD) has attracted considerable interest in a wide variety of hyperspectral remote sensing applications. The goal of this unsupervised technique of target detection is to identify the pixels with significantly different spectral signatures from the neighboring background. Kernel methods, such as kernel-based support vector data description (SVDD) (K-SVDD), have been presented as the successful approach to AD problems. The most commonly used kernel is the Gaussian kernel function. The main problem using the Gaussian kernel-based AD methods is the optimal setting of sigma. In an attempt to address this problem, this paper proposes a direct and adaptive measure for Gaussian K-SVDD (GK-SVDD). The proposed measure is based on a geometric interpretation of the GK-SVDD. Experimental results are presented on real and synthetically implanted targets of the target detection blind-test data sets. Compared to previous measures, the results demonstrate better performance, particularly for subpixel anomalies.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2010.2098842</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly detection (AD) ; Detectors ; Estimation ; Gaussian ; Gaussian kernel ; hyperspectral images ; Hyperspectral imaging ; Kernel ; Kernels ; Mathematical analysis ; Pixel ; Remote sensing ; Studies ; support vector (SV) data description (SVDD) ; Support vector machines ; Target detection ; Vectors (mathematics)</subject><ispartof>IEEE geoscience and remote sensing letters, 2011-07, Vol.8 (4), p.646-650</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-fb9ae317414fd7c5120588b8e562058f57935ba3d2727f83d6c2c23de3f8bea43</citedby><cites>FETCH-LOGICAL-c357t-fb9ae317414fd7c5120588b8e562058f57935ba3d2727f83d6c2c23de3f8bea43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5701654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5701654$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khazai, S.</creatorcontrib><creatorcontrib>Homayouni, S.</creatorcontrib><creatorcontrib>Safari, A.</creatorcontrib><creatorcontrib>Mojaradi, B.</creatorcontrib><title>Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Recently, anomaly detection (AD) has attracted considerable interest in a wide variety of hyperspectral remote sensing applications. The goal of this unsupervised technique of target detection is to identify the pixels with significantly different spectral signatures from the neighboring background. Kernel methods, such as kernel-based support vector data description (SVDD) (K-SVDD), have been presented as the successful approach to AD problems. The most commonly used kernel is the Gaussian kernel function. The main problem using the Gaussian kernel-based AD methods is the optimal setting of sigma. In an attempt to address this problem, this paper proposes a direct and adaptive measure for Gaussian K-SVDD (GK-SVDD). The proposed measure is based on a geometric interpretation of the GK-SVDD. Experimental results are presented on real and synthetically implanted targets of the target detection blind-test data sets. Compared to previous measures, the results demonstrate better performance, particularly for subpixel anomalies.</description><subject>Anomalies</subject><subject>Anomaly detection (AD)</subject><subject>Detectors</subject><subject>Estimation</subject><subject>Gaussian</subject><subject>Gaussian kernel</subject><subject>hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Pixel</subject><subject>Remote sensing</subject><subject>Studies</subject><subject>support vector (SV) data description (SVDD)</subject><subject>Support vector machines</subject><subject>Target detection</subject><subject>Vectors (mathematics)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90UtLxDAQB_AiCq6PDyBeghe9dM2zmR7Xt7AiuKt4C2k71Uq3qUkr7Le3ZcWDB0-ZDL8ZGP5RdMTolDGans9vnxZTTocvpymA5FvRhCkFMVWabY-1VLFK4XU32gvhg1IuAfQkWs4at7L1mlxhh3lXuYZUDblbt-hDOzS8rcn9yr5hIBc2YEEGYBsyK2zbVV9IFn3bOt-Rl8E6Tx6we3fFQbRT2jrg4c-7Hz3fXC8v7-L54-395Wwe50LpLi6z1KJgWjJZFjpXjFMFkAGqZKxKpVOhMisKrrkuQRRJznMuChQlZGil2I9ON3tb7z57DJ1ZVSHHurYNuj4YSBOmeaLEIM_-lUxrylPOYKQnf-iH630z3GFAC5AMJAyIbVDuXQgeS9P6amX92jBqxkDMGIgZAzE_gQwzx5uZChF_vdKUJUqKb2EUhb8</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Khazai, S.</creator><creator>Homayouni, S.</creator><creator>Safari, A.</creator><creator>Mojaradi, B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201107</creationdate><title>Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method</title><author>Khazai, S. ; Homayouni, S. ; Safari, A. ; Mojaradi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-fb9ae317414fd7c5120588b8e562058f57935ba3d2727f83d6c2c23de3f8bea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anomalies</topic><topic>Anomaly detection (AD)</topic><topic>Detectors</topic><topic>Estimation</topic><topic>Gaussian</topic><topic>Gaussian kernel</topic><topic>hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Pixel</topic><topic>Remote sensing</topic><topic>Studies</topic><topic>support vector (SV) data description (SVDD)</topic><topic>Support vector machines</topic><topic>Target detection</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khazai, S.</creatorcontrib><creatorcontrib>Homayouni, S.</creatorcontrib><creatorcontrib>Safari, A.</creatorcontrib><creatorcontrib>Mojaradi, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khazai, S.</au><au>Homayouni, S.</au><au>Safari, A.</au><au>Mojaradi, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2011-07</date><risdate>2011</risdate><volume>8</volume><issue>4</issue><spage>646</spage><epage>650</epage><pages>646-650</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Recently, anomaly detection (AD) has attracted considerable interest in a wide variety of hyperspectral remote sensing applications. The goal of this unsupervised technique of target detection is to identify the pixels with significantly different spectral signatures from the neighboring background. Kernel methods, such as kernel-based support vector data description (SVDD) (K-SVDD), have been presented as the successful approach to AD problems. The most commonly used kernel is the Gaussian kernel function. The main problem using the Gaussian kernel-based AD methods is the optimal setting of sigma. In an attempt to address this problem, this paper proposes a direct and adaptive measure for Gaussian K-SVDD (GK-SVDD). The proposed measure is based on a geometric interpretation of the GK-SVDD. Experimental results are presented on real and synthetically implanted targets of the target detection blind-test data sets. Compared to previous measures, the results demonstrate better performance, particularly for subpixel anomalies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2010.2098842</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2011-07, Vol.8 (4), p.646-650 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_miscellaneous_896172653 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Anomaly detection (AD) Detectors Estimation Gaussian Gaussian kernel hyperspectral images Hyperspectral imaging Kernel Kernels Mathematical analysis Pixel Remote sensing Studies support vector (SV) data description (SVDD) Support vector machines Target detection Vectors (mathematics) |
title | Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T09%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20Detection%20in%20Hyperspectral%20Images%20Based%20on%20an%20Adaptive%20Support%20Vector%20Method&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Khazai,%20S.&rft.date=2011-07&rft.volume=8&rft.issue=4&rft.spage=646&rft.epage=650&rft.pages=646-650&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2010.2098842&rft_dat=%3Cproquest_RIE%3E2385782901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873841848&rft_id=info:pmid/&rft_ieee_id=5701654&rfr_iscdi=true |