Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters
Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this...
Gespeichert in:
Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2010-09, Vol.162 (3), p.956-964 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 964 |
---|---|
container_issue | 3 |
container_start_page | 956 |
container_title | Chemical engineering journal (Lausanne, Switzerland : 1996) |
container_volume | 162 |
creator | Haapala, Antti Honkanen, Markus Liimatainen, Henrikki Stoor, Tuomas Niinimäki, Jouko |
description | Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this paper the terminal velocities and drag coefficients of bubbles as a function of the bubble Reynolds number are studied experimentally in papermaking process waters with a high-speed CMOS camera and a submersed back-light illumination in a pressurised bubble column. Bubbles are tracked in time to provide time series data for every bubble that passes the focal plane of the imaging system. Image sequences are analysed with automatic image processing algorithms that measure the velocity and size of bubbles, and also the velocity of the fluid surrounding the bubbles revealing the instantaneous slip velocity of each bubble. Results show how suspension viscosity, surface tension and solids content affect the kinetics of microbubbles. Changes in microbubble formation during a pressure drop and differences of bubble size distributions in a variety of process waters and model solutions are also shown. Finally, an empirical correlation between the bubble drag coefficient and the bubble Reynolds number is generated for the investigated process waters. |
doi_str_mv | 10.1016/j.cej.2010.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896170855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894710006005</els_id><sourcerecordid>896170855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-5b91390424409644705d80ddde245bac7fee2124366f5ac2ada46cb7a645adc53</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4soOKcfwFsuopfOJE2aFk8y1AkDEfQcXpPXkdm1M-km_famTDzulIT3e-__8kuSa0ZnjLL8fj0zuJ5xGt9UzShlJ8mEFSpLM874abxnhUyLUqjz5CKENaU0L1k5Sd4Xg_WdHVrYOEOshxWB1hLvApI9Np1x_UC6msSq76pdVTUYiGvJFrboN_Dl2hXZ-s5gCOQHevThMjmroQl49XdOk8_np4_5Il2-vbzOH5epEbLoU1mVLCup4ELQMhdCUWkLaq1FLmQFRtWIcXWR5XktwXCwIHJTKciFBGtkNk1uD3Nj_PcOQ683LhhsGmix2wVdlDlTtJAjeXeUjFipCsnUiLIDGn8bgsdab73bgB80o3oUrdc6itajaE2VjqJjz83feAgGmtpDa1z4b-QZ54rzkXs4cBit7B16HYzD1qB1Hk2vbeeOpPwCxGiS2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709785175</pqid></control><display><type>article</type><title>Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters</title><source>Elsevier ScienceDirect Journals</source><creator>Haapala, Antti ; Honkanen, Markus ; Liimatainen, Henrikki ; Stoor, Tuomas ; Niinimäki, Jouko</creator><creatorcontrib>Haapala, Antti ; Honkanen, Markus ; Liimatainen, Henrikki ; Stoor, Tuomas ; Niinimäki, Jouko</creatorcontrib><description>Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this paper the terminal velocities and drag coefficients of bubbles as a function of the bubble Reynolds number are studied experimentally in papermaking process waters with a high-speed CMOS camera and a submersed back-light illumination in a pressurised bubble column. Bubbles are tracked in time to provide time series data for every bubble that passes the focal plane of the imaging system. Image sequences are analysed with automatic image processing algorithms that measure the velocity and size of bubbles, and also the velocity of the fluid surrounding the bubbles revealing the instantaneous slip velocity of each bubble. Results show how suspension viscosity, surface tension and solids content affect the kinetics of microbubbles. Changes in microbubble formation during a pressure drop and differences of bubble size distributions in a variety of process waters and model solutions are also shown. Finally, an empirical correlation between the bubble drag coefficient and the bubble Reynolds number is generated for the investigated process waters.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2010.07.001</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Bubble dynamics ; Bubbles ; Chemical engineering ; Computational fluid dynamics ; Drag ; Exact sciences and technology ; Fluid flow ; Focal plane ; Hydrodynamic drag ; Hydrodynamics of contact apparatus ; Image analysis ; Microorganisms ; Multiphase flow ; Papermaking ; Reynolds number ; Separations</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2010-09, Vol.162 (3), p.956-964</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-5b91390424409644705d80ddde245bac7fee2124366f5ac2ada46cb7a645adc53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cej.2010.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23227221$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haapala, Antti</creatorcontrib><creatorcontrib>Honkanen, Markus</creatorcontrib><creatorcontrib>Liimatainen, Henrikki</creatorcontrib><creatorcontrib>Stoor, Tuomas</creatorcontrib><creatorcontrib>Niinimäki, Jouko</creatorcontrib><title>Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this paper the terminal velocities and drag coefficients of bubbles as a function of the bubble Reynolds number are studied experimentally in papermaking process waters with a high-speed CMOS camera and a submersed back-light illumination in a pressurised bubble column. Bubbles are tracked in time to provide time series data for every bubble that passes the focal plane of the imaging system. Image sequences are analysed with automatic image processing algorithms that measure the velocity and size of bubbles, and also the velocity of the fluid surrounding the bubbles revealing the instantaneous slip velocity of each bubble. Results show how suspension viscosity, surface tension and solids content affect the kinetics of microbubbles. Changes in microbubble formation during a pressure drop and differences of bubble size distributions in a variety of process waters and model solutions are also shown. Finally, an empirical correlation between the bubble drag coefficient and the bubble Reynolds number is generated for the investigated process waters.</description><subject>Applied sciences</subject><subject>Bubble dynamics</subject><subject>Bubbles</subject><subject>Chemical engineering</subject><subject>Computational fluid dynamics</subject><subject>Drag</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Focal plane</subject><subject>Hydrodynamic drag</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Image analysis</subject><subject>Microorganisms</subject><subject>Multiphase flow</subject><subject>Papermaking</subject><subject>Reynolds number</subject><subject>Separations</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4soOKcfwFsuopfOJE2aFk8y1AkDEfQcXpPXkdm1M-km_famTDzulIT3e-__8kuSa0ZnjLL8fj0zuJ5xGt9UzShlJ8mEFSpLM874abxnhUyLUqjz5CKENaU0L1k5Sd4Xg_WdHVrYOEOshxWB1hLvApI9Np1x_UC6msSq76pdVTUYiGvJFrboN_Dl2hXZ-s5gCOQHevThMjmroQl49XdOk8_np4_5Il2-vbzOH5epEbLoU1mVLCup4ELQMhdCUWkLaq1FLmQFRtWIcXWR5XktwXCwIHJTKciFBGtkNk1uD3Nj_PcOQ683LhhsGmix2wVdlDlTtJAjeXeUjFipCsnUiLIDGn8bgsdab73bgB80o3oUrdc6itajaE2VjqJjz83feAgGmtpDa1z4b-QZ54rzkXs4cBit7B16HYzD1qB1Hk2vbeeOpPwCxGiS2w</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Haapala, Antti</creator><creator>Honkanen, Markus</creator><creator>Liimatainen, Henrikki</creator><creator>Stoor, Tuomas</creator><creator>Niinimäki, Jouko</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100901</creationdate><title>Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters</title><author>Haapala, Antti ; Honkanen, Markus ; Liimatainen, Henrikki ; Stoor, Tuomas ; Niinimäki, Jouko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-5b91390424409644705d80ddde245bac7fee2124366f5ac2ada46cb7a645adc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Bubble dynamics</topic><topic>Bubbles</topic><topic>Chemical engineering</topic><topic>Computational fluid dynamics</topic><topic>Drag</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Focal plane</topic><topic>Hydrodynamic drag</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Image analysis</topic><topic>Microorganisms</topic><topic>Multiphase flow</topic><topic>Papermaking</topic><topic>Reynolds number</topic><topic>Separations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haapala, Antti</creatorcontrib><creatorcontrib>Honkanen, Markus</creatorcontrib><creatorcontrib>Liimatainen, Henrikki</creatorcontrib><creatorcontrib>Stoor, Tuomas</creatorcontrib><creatorcontrib>Niinimäki, Jouko</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haapala, Antti</au><au>Honkanen, Markus</au><au>Liimatainen, Henrikki</au><au>Stoor, Tuomas</au><au>Niinimäki, Jouko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>162</volume><issue>3</issue><spage>956</spage><epage>964</epage><pages>956-964</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this paper the terminal velocities and drag coefficients of bubbles as a function of the bubble Reynolds number are studied experimentally in papermaking process waters with a high-speed CMOS camera and a submersed back-light illumination in a pressurised bubble column. Bubbles are tracked in time to provide time series data for every bubble that passes the focal plane of the imaging system. Image sequences are analysed with automatic image processing algorithms that measure the velocity and size of bubbles, and also the velocity of the fluid surrounding the bubbles revealing the instantaneous slip velocity of each bubble. Results show how suspension viscosity, surface tension and solids content affect the kinetics of microbubbles. Changes in microbubble formation during a pressure drop and differences of bubble size distributions in a variety of process waters and model solutions are also shown. Finally, an empirical correlation between the bubble drag coefficient and the bubble Reynolds number is generated for the investigated process waters.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2010.07.001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-8947 |
ispartof | Chemical engineering journal (Lausanne, Switzerland : 1996), 2010-09, Vol.162 (3), p.956-964 |
issn | 1385-8947 1873-3212 |
language | eng |
recordid | cdi_proquest_miscellaneous_896170855 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Bubble dynamics Bubbles Chemical engineering Computational fluid dynamics Drag Exact sciences and technology Fluid flow Focal plane Hydrodynamic drag Hydrodynamics of contact apparatus Image analysis Microorganisms Multiphase flow Papermaking Reynolds number Separations |
title | Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20drag%20and%20rise%20velocity%20of%20microbubbles%20in%20papermaking%20process%20waters&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Haapala,%20Antti&rft.date=2010-09-01&rft.volume=162&rft.issue=3&rft.spage=956&rft.epage=964&rft.pages=956-964&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2010.07.001&rft_dat=%3Cproquest_cross%3E896170855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709785175&rft_id=info:pmid/&rft_els_id=S1385894710006005&rfr_iscdi=true |