Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters

Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2010-09, Vol.162 (3), p.956-964
Hauptverfasser: Haapala, Antti, Honkanen, Markus, Liimatainen, Henrikki, Stoor, Tuomas, Niinimäki, Jouko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 964
container_issue 3
container_start_page 956
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 162
creator Haapala, Antti
Honkanen, Markus
Liimatainen, Henrikki
Stoor, Tuomas
Niinimäki, Jouko
description Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this paper the terminal velocities and drag coefficients of bubbles as a function of the bubble Reynolds number are studied experimentally in papermaking process waters with a high-speed CMOS camera and a submersed back-light illumination in a pressurised bubble column. Bubbles are tracked in time to provide time series data for every bubble that passes the focal plane of the imaging system. Image sequences are analysed with automatic image processing algorithms that measure the velocity and size of bubbles, and also the velocity of the fluid surrounding the bubbles revealing the instantaneous slip velocity of each bubble. Results show how suspension viscosity, surface tension and solids content affect the kinetics of microbubbles. Changes in microbubble formation during a pressure drop and differences of bubble size distributions in a variety of process waters and model solutions are also shown. Finally, an empirical correlation between the bubble drag coefficient and the bubble Reynolds number is generated for the investigated process waters.
doi_str_mv 10.1016/j.cej.2010.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896170855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894710006005</els_id><sourcerecordid>896170855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-5b91390424409644705d80ddde245bac7fee2124366f5ac2ada46cb7a645adc53</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4soOKcfwFsuopfOJE2aFk8y1AkDEfQcXpPXkdm1M-km_famTDzulIT3e-__8kuSa0ZnjLL8fj0zuJ5xGt9UzShlJ8mEFSpLM874abxnhUyLUqjz5CKENaU0L1k5Sd4Xg_WdHVrYOEOshxWB1hLvApI9Np1x_UC6msSq76pdVTUYiGvJFrboN_Dl2hXZ-s5gCOQHevThMjmroQl49XdOk8_np4_5Il2-vbzOH5epEbLoU1mVLCup4ELQMhdCUWkLaq1FLmQFRtWIcXWR5XktwXCwIHJTKciFBGtkNk1uD3Nj_PcOQ683LhhsGmix2wVdlDlTtJAjeXeUjFipCsnUiLIDGn8bgsdab73bgB80o3oUrdc6itajaE2VjqJjz83feAgGmtpDa1z4b-QZ54rzkXs4cBit7B16HYzD1qB1Hk2vbeeOpPwCxGiS2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709785175</pqid></control><display><type>article</type><title>Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters</title><source>Elsevier ScienceDirect Journals</source><creator>Haapala, Antti ; Honkanen, Markus ; Liimatainen, Henrikki ; Stoor, Tuomas ; Niinimäki, Jouko</creator><creatorcontrib>Haapala, Antti ; Honkanen, Markus ; Liimatainen, Henrikki ; Stoor, Tuomas ; Niinimäki, Jouko</creatorcontrib><description>Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this paper the terminal velocities and drag coefficients of bubbles as a function of the bubble Reynolds number are studied experimentally in papermaking process waters with a high-speed CMOS camera and a submersed back-light illumination in a pressurised bubble column. Bubbles are tracked in time to provide time series data for every bubble that passes the focal plane of the imaging system. Image sequences are analysed with automatic image processing algorithms that measure the velocity and size of bubbles, and also the velocity of the fluid surrounding the bubbles revealing the instantaneous slip velocity of each bubble. Results show how suspension viscosity, surface tension and solids content affect the kinetics of microbubbles. Changes in microbubble formation during a pressure drop and differences of bubble size distributions in a variety of process waters and model solutions are also shown. Finally, an empirical correlation between the bubble drag coefficient and the bubble Reynolds number is generated for the investigated process waters.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2010.07.001</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Bubble dynamics ; Bubbles ; Chemical engineering ; Computational fluid dynamics ; Drag ; Exact sciences and technology ; Fluid flow ; Focal plane ; Hydrodynamic drag ; Hydrodynamics of contact apparatus ; Image analysis ; Microorganisms ; Multiphase flow ; Papermaking ; Reynolds number ; Separations</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2010-09, Vol.162 (3), p.956-964</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-5b91390424409644705d80ddde245bac7fee2124366f5ac2ada46cb7a645adc53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cej.2010.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23227221$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haapala, Antti</creatorcontrib><creatorcontrib>Honkanen, Markus</creatorcontrib><creatorcontrib>Liimatainen, Henrikki</creatorcontrib><creatorcontrib>Stoor, Tuomas</creatorcontrib><creatorcontrib>Niinimäki, Jouko</creatorcontrib><title>Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this paper the terminal velocities and drag coefficients of bubbles as a function of the bubble Reynolds number are studied experimentally in papermaking process waters with a high-speed CMOS camera and a submersed back-light illumination in a pressurised bubble column. Bubbles are tracked in time to provide time series data for every bubble that passes the focal plane of the imaging system. Image sequences are analysed with automatic image processing algorithms that measure the velocity and size of bubbles, and also the velocity of the fluid surrounding the bubbles revealing the instantaneous slip velocity of each bubble. Results show how suspension viscosity, surface tension and solids content affect the kinetics of microbubbles. Changes in microbubble formation during a pressure drop and differences of bubble size distributions in a variety of process waters and model solutions are also shown. Finally, an empirical correlation between the bubble drag coefficient and the bubble Reynolds number is generated for the investigated process waters.</description><subject>Applied sciences</subject><subject>Bubble dynamics</subject><subject>Bubbles</subject><subject>Chemical engineering</subject><subject>Computational fluid dynamics</subject><subject>Drag</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Focal plane</subject><subject>Hydrodynamic drag</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Image analysis</subject><subject>Microorganisms</subject><subject>Multiphase flow</subject><subject>Papermaking</subject><subject>Reynolds number</subject><subject>Separations</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4soOKcfwFsuopfOJE2aFk8y1AkDEfQcXpPXkdm1M-km_famTDzulIT3e-__8kuSa0ZnjLL8fj0zuJ5xGt9UzShlJ8mEFSpLM874abxnhUyLUqjz5CKENaU0L1k5Sd4Xg_WdHVrYOEOshxWB1hLvApI9Np1x_UC6msSq76pdVTUYiGvJFrboN_Dl2hXZ-s5gCOQHevThMjmroQl49XdOk8_np4_5Il2-vbzOH5epEbLoU1mVLCup4ELQMhdCUWkLaq1FLmQFRtWIcXWR5XktwXCwIHJTKciFBGtkNk1uD3Nj_PcOQ683LhhsGmix2wVdlDlTtJAjeXeUjFipCsnUiLIDGn8bgsdab73bgB80o3oUrdc6itajaE2VjqJjz83feAgGmtpDa1z4b-QZ54rzkXs4cBit7B16HYzD1qB1Hk2vbeeOpPwCxGiS2w</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Haapala, Antti</creator><creator>Honkanen, Markus</creator><creator>Liimatainen, Henrikki</creator><creator>Stoor, Tuomas</creator><creator>Niinimäki, Jouko</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100901</creationdate><title>Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters</title><author>Haapala, Antti ; Honkanen, Markus ; Liimatainen, Henrikki ; Stoor, Tuomas ; Niinimäki, Jouko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-5b91390424409644705d80ddde245bac7fee2124366f5ac2ada46cb7a645adc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Bubble dynamics</topic><topic>Bubbles</topic><topic>Chemical engineering</topic><topic>Computational fluid dynamics</topic><topic>Drag</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Focal plane</topic><topic>Hydrodynamic drag</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Image analysis</topic><topic>Microorganisms</topic><topic>Multiphase flow</topic><topic>Papermaking</topic><topic>Reynolds number</topic><topic>Separations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haapala, Antti</creatorcontrib><creatorcontrib>Honkanen, Markus</creatorcontrib><creatorcontrib>Liimatainen, Henrikki</creatorcontrib><creatorcontrib>Stoor, Tuomas</creatorcontrib><creatorcontrib>Niinimäki, Jouko</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haapala, Antti</au><au>Honkanen, Markus</au><au>Liimatainen, Henrikki</au><au>Stoor, Tuomas</au><au>Niinimäki, Jouko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>162</volume><issue>3</issue><spage>956</spage><epage>964</epage><pages>956-964</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>Diversity of dissolved, colloidal and solid materials present in papermaking process waters influences the rise of microbubbles by increasing their drag. This effect is known to reduce the gas separation efficiency but its importance thus far has not been quantified by experimental studies. In this paper the terminal velocities and drag coefficients of bubbles as a function of the bubble Reynolds number are studied experimentally in papermaking process waters with a high-speed CMOS camera and a submersed back-light illumination in a pressurised bubble column. Bubbles are tracked in time to provide time series data for every bubble that passes the focal plane of the imaging system. Image sequences are analysed with automatic image processing algorithms that measure the velocity and size of bubbles, and also the velocity of the fluid surrounding the bubbles revealing the instantaneous slip velocity of each bubble. Results show how suspension viscosity, surface tension and solids content affect the kinetics of microbubbles. Changes in microbubble formation during a pressure drop and differences of bubble size distributions in a variety of process waters and model solutions are also shown. Finally, an empirical correlation between the bubble drag coefficient and the bubble Reynolds number is generated for the investigated process waters.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2010.07.001</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2010-09, Vol.162 (3), p.956-964
issn 1385-8947
1873-3212
language eng
recordid cdi_proquest_miscellaneous_896170855
source Elsevier ScienceDirect Journals
subjects Applied sciences
Bubble dynamics
Bubbles
Chemical engineering
Computational fluid dynamics
Drag
Exact sciences and technology
Fluid flow
Focal plane
Hydrodynamic drag
Hydrodynamics of contact apparatus
Image analysis
Microorganisms
Multiphase flow
Papermaking
Reynolds number
Separations
title Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20drag%20and%20rise%20velocity%20of%20microbubbles%20in%20papermaking%20process%20waters&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Haapala,%20Antti&rft.date=2010-09-01&rft.volume=162&rft.issue=3&rft.spage=956&rft.epage=964&rft.pages=956-964&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2010.07.001&rft_dat=%3Cproquest_cross%3E896170855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709785175&rft_id=info:pmid/&rft_els_id=S1385894710006005&rfr_iscdi=true