An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints

This study investigates the microstructural evolution and kinetics of intermetallic (IMC) formation in Sn-3.5Ag-0.7Cu lead-free solder joints with different percentages of Sb element, namely, Sn-3.5Ag-0.7Cu-xSb (x=0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0). To investigate the elemental interdiffusion and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components and packaging technologies 2005-09, Vol.28 (3), p.534-541
Hauptverfasser: Chen, B.L., Li, G.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 541
container_issue 3
container_start_page 534
container_title IEEE transactions on components and packaging technologies
container_volume 28
creator Chen, B.L.
Li, G.Y.
description This study investigates the microstructural evolution and kinetics of intermetallic (IMC) formation in Sn-3.5Ag-0.7Cu lead-free solder joints with different percentages of Sb element, namely, Sn-3.5Ag-0.7Cu-xSb (x=0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0). To investigate the elemental interdiffusion and growth kinetics of IMC formation, isothermal aging test is performed at temperatures of 100/spl deg/C, 150/spl deg/C, and 190/spl deg/C, respectively. Scanning electron microscope (SEM) is used to measure the thickness of intermetallic layer and observe the microstructural evolution of solder joint. The IMC phases are identified by EDX and XRD. Results show that some of the antimony powders are dissolved in the /spl beta/-Sn matrix (Sn-rich phase), some of them participate in the formation of Ag/sub 3/(Sn,Sb) and the rest dissolves in the Cu/sub 6/Sn/sub 5/ IMC layer. There is a significant drop in IMC thickness when Sb is added to 0.8 wt%. Over this amount the thickness of the IMC increases slightly again. The activation energy and growth rate of the IMC formation are determined. Results reveal that adding antimony in Sn-3.5Ag-0.7Cu solder system can increase the activation energy, and thus reduce the atomic diffusion rate, so as to inhibit the excessive growth of the IMC. The solder joint containing 0.8 wt% antimony has the highest activation energy. SEM images reveal that the number of small particles precipitating in the solder matrix increases with the increase in Sb composition. Based on the observation of the microstructural evolution of the solder joints, a grain boundary pinning mechanism for inhibition of the IMC growth due to Sb addition is proposed.
doi_str_mv 10.1109/TCAPT.2005.848573
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896169546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1501955</ieee_id><sourcerecordid>896169546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-3d83f816dda311dbbb09d4009438b79851aadd74ffde8451c7903298e79db46c3</originalsourceid><addsrcrecordid>eNqN0c1KxDAUBeAiCuroA4ib4kJXrfc2SZMsh8E_EBRmXMe2ScYOnUaTjuDbm7GC4EJc5RK-k3A5SXKCkCOCvFzMpo-LvABguaCCcbKTHCBjPJOSF7vbucCMEIL7yWEIKwCkgsqD5Hnap23_bsLQLquhdX3qbGqsNc0QtuO8TuPd8GKiGoxfm6HqurZJrfPr0bd9Ou8zkrPpMoOczzZpcJ02Pl25GAlHyZ6tumCOv89J8nR9tZjdZvcPN3ez6X3WEFEOGdGCWIGl1hVB1HVdg9QUQFIiai4Fw6rSmlNrtRGUYcMlkEIKw6WuadmQSXIxvvvq3dsm7qPWbWhM11W9cZughCyxlIyWUZ7_KQuBhAPFf0DgwEse4dkvuHIb38d1lSglSB6_jghH1HgXgjdWvfp2XfkPhaC2HaqvDtW2QzV2GDOnY6Y1xvx4BigZI5_XKpYL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869097616</pqid></control><display><type>article</type><title>An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, B.L. ; Li, G.Y.</creator><creatorcontrib>Chen, B.L. ; Li, G.Y.</creatorcontrib><description>This study investigates the microstructural evolution and kinetics of intermetallic (IMC) formation in Sn-3.5Ag-0.7Cu lead-free solder joints with different percentages of Sb element, namely, Sn-3.5Ag-0.7Cu-xSb (x=0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0). To investigate the elemental interdiffusion and growth kinetics of IMC formation, isothermal aging test is performed at temperatures of 100/spl deg/C, 150/spl deg/C, and 190/spl deg/C, respectively. Scanning electron microscope (SEM) is used to measure the thickness of intermetallic layer and observe the microstructural evolution of solder joint. The IMC phases are identified by EDX and XRD. Results show that some of the antimony powders are dissolved in the /spl beta/-Sn matrix (Sn-rich phase), some of them participate in the formation of Ag/sub 3/(Sn,Sb) and the rest dissolves in the Cu/sub 6/Sn/sub 5/ IMC layer. There is a significant drop in IMC thickness when Sb is added to 0.8 wt%. Over this amount the thickness of the IMC increases slightly again. The activation energy and growth rate of the IMC formation are determined. Results reveal that adding antimony in Sn-3.5Ag-0.7Cu solder system can increase the activation energy, and thus reduce the atomic diffusion rate, so as to inhibit the excessive growth of the IMC. The solder joint containing 0.8 wt% antimony has the highest activation energy. SEM images reveal that the number of small particles precipitating in the solder matrix increases with the increase in Sb composition. Based on the observation of the microstructural evolution of the solder joints, a grain boundary pinning mechanism for inhibition of the IMC growth due to Sb addition is proposed.</description><identifier>ISSN: 1521-3331</identifier><identifier>EISSN: 1557-9972</identifier><identifier>DOI: 10.1109/TCAPT.2005.848573</identifier><identifier>CODEN: ITCPFB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activation energy ; Aging ; Alloys ; Antimony ; Environmentally friendly manufacturing techniques ; Evolution ; Grain boundary diffusion ; Intermetallic ; Intermetallic compounds ; intermetallic growth ; Intermetallics ; Isothermal processes ; Kinetic theory ; Lead ; lead-free solder ; Metallurgy ; Microstructure ; Performance evaluation ; Sb addition ; Scanning electron microscopy ; Soldering ; Solders ; Testing ; Tin ; Tin base alloys</subject><ispartof>IEEE transactions on components and packaging technologies, 2005-09, Vol.28 (3), p.534-541</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-3d83f816dda311dbbb09d4009438b79851aadd74ffde8451c7903298e79db46c3</citedby><cites>FETCH-LOGICAL-c386t-3d83f816dda311dbbb09d4009438b79851aadd74ffde8451c7903298e79db46c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1501955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1501955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, B.L.</creatorcontrib><creatorcontrib>Li, G.Y.</creatorcontrib><title>An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints</title><title>IEEE transactions on components and packaging technologies</title><addtitle>TCAPT</addtitle><description>This study investigates the microstructural evolution and kinetics of intermetallic (IMC) formation in Sn-3.5Ag-0.7Cu lead-free solder joints with different percentages of Sb element, namely, Sn-3.5Ag-0.7Cu-xSb (x=0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0). To investigate the elemental interdiffusion and growth kinetics of IMC formation, isothermal aging test is performed at temperatures of 100/spl deg/C, 150/spl deg/C, and 190/spl deg/C, respectively. Scanning electron microscope (SEM) is used to measure the thickness of intermetallic layer and observe the microstructural evolution of solder joint. The IMC phases are identified by EDX and XRD. Results show that some of the antimony powders are dissolved in the /spl beta/-Sn matrix (Sn-rich phase), some of them participate in the formation of Ag/sub 3/(Sn,Sb) and the rest dissolves in the Cu/sub 6/Sn/sub 5/ IMC layer. There is a significant drop in IMC thickness when Sb is added to 0.8 wt%. Over this amount the thickness of the IMC increases slightly again. The activation energy and growth rate of the IMC formation are determined. Results reveal that adding antimony in Sn-3.5Ag-0.7Cu solder system can increase the activation energy, and thus reduce the atomic diffusion rate, so as to inhibit the excessive growth of the IMC. The solder joint containing 0.8 wt% antimony has the highest activation energy. SEM images reveal that the number of small particles precipitating in the solder matrix increases with the increase in Sb composition. Based on the observation of the microstructural evolution of the solder joints, a grain boundary pinning mechanism for inhibition of the IMC growth due to Sb addition is proposed.</description><subject>Activation energy</subject><subject>Aging</subject><subject>Alloys</subject><subject>Antimony</subject><subject>Environmentally friendly manufacturing techniques</subject><subject>Evolution</subject><subject>Grain boundary diffusion</subject><subject>Intermetallic</subject><subject>Intermetallic compounds</subject><subject>intermetallic growth</subject><subject>Intermetallics</subject><subject>Isothermal processes</subject><subject>Kinetic theory</subject><subject>Lead</subject><subject>lead-free solder</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Performance evaluation</subject><subject>Sb addition</subject><subject>Scanning electron microscopy</subject><subject>Soldering</subject><subject>Solders</subject><subject>Testing</subject><subject>Tin</subject><subject>Tin base alloys</subject><issn>1521-3331</issn><issn>1557-9972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0c1KxDAUBeAiCuroA4ib4kJXrfc2SZMsh8E_EBRmXMe2ScYOnUaTjuDbm7GC4EJc5RK-k3A5SXKCkCOCvFzMpo-LvABguaCCcbKTHCBjPJOSF7vbucCMEIL7yWEIKwCkgsqD5Hnap23_bsLQLquhdX3qbGqsNc0QtuO8TuPd8GKiGoxfm6HqurZJrfPr0bd9Ou8zkrPpMoOczzZpcJ02Pl25GAlHyZ6tumCOv89J8nR9tZjdZvcPN3ez6X3WEFEOGdGCWIGl1hVB1HVdg9QUQFIiai4Fw6rSmlNrtRGUYcMlkEIKw6WuadmQSXIxvvvq3dsm7qPWbWhM11W9cZughCyxlIyWUZ7_KQuBhAPFf0DgwEse4dkvuHIb38d1lSglSB6_jghH1HgXgjdWvfp2XfkPhaC2HaqvDtW2QzV2GDOnY6Y1xvx4BigZI5_XKpYL</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Chen, B.L.</creator><creator>Li, G.Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>8BQ</scope><scope>FR3</scope><scope>JG9</scope><scope>F28</scope></search><sort><creationdate>20050901</creationdate><title>An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints</title><author>Chen, B.L. ; Li, G.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-3d83f816dda311dbbb09d4009438b79851aadd74ffde8451c7903298e79db46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Activation energy</topic><topic>Aging</topic><topic>Alloys</topic><topic>Antimony</topic><topic>Environmentally friendly manufacturing techniques</topic><topic>Evolution</topic><topic>Grain boundary diffusion</topic><topic>Intermetallic</topic><topic>Intermetallic compounds</topic><topic>intermetallic growth</topic><topic>Intermetallics</topic><topic>Isothermal processes</topic><topic>Kinetic theory</topic><topic>Lead</topic><topic>lead-free solder</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Performance evaluation</topic><topic>Sb addition</topic><topic>Scanning electron microscopy</topic><topic>Soldering</topic><topic>Solders</topic><topic>Testing</topic><topic>Tin</topic><topic>Tin base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, B.L.</creatorcontrib><creatorcontrib>Li, G.Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on components and packaging technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, B.L.</au><au>Li, G.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints</atitle><jtitle>IEEE transactions on components and packaging technologies</jtitle><stitle>TCAPT</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>28</volume><issue>3</issue><spage>534</spage><epage>541</epage><pages>534-541</pages><issn>1521-3331</issn><eissn>1557-9972</eissn><coden>ITCPFB</coden><abstract>This study investigates the microstructural evolution and kinetics of intermetallic (IMC) formation in Sn-3.5Ag-0.7Cu lead-free solder joints with different percentages of Sb element, namely, Sn-3.5Ag-0.7Cu-xSb (x=0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0). To investigate the elemental interdiffusion and growth kinetics of IMC formation, isothermal aging test is performed at temperatures of 100/spl deg/C, 150/spl deg/C, and 190/spl deg/C, respectively. Scanning electron microscope (SEM) is used to measure the thickness of intermetallic layer and observe the microstructural evolution of solder joint. The IMC phases are identified by EDX and XRD. Results show that some of the antimony powders are dissolved in the /spl beta/-Sn matrix (Sn-rich phase), some of them participate in the formation of Ag/sub 3/(Sn,Sb) and the rest dissolves in the Cu/sub 6/Sn/sub 5/ IMC layer. There is a significant drop in IMC thickness when Sb is added to 0.8 wt%. Over this amount the thickness of the IMC increases slightly again. The activation energy and growth rate of the IMC formation are determined. Results reveal that adding antimony in Sn-3.5Ag-0.7Cu solder system can increase the activation energy, and thus reduce the atomic diffusion rate, so as to inhibit the excessive growth of the IMC. The solder joint containing 0.8 wt% antimony has the highest activation energy. SEM images reveal that the number of small particles precipitating in the solder matrix increases with the increase in Sb composition. Based on the observation of the microstructural evolution of the solder joints, a grain boundary pinning mechanism for inhibition of the IMC growth due to Sb addition is proposed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAPT.2005.848573</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-3331
ispartof IEEE transactions on components and packaging technologies, 2005-09, Vol.28 (3), p.534-541
issn 1521-3331
1557-9972
language eng
recordid cdi_proquest_miscellaneous_896169546
source IEEE Electronic Library (IEL)
subjects Activation energy
Aging
Alloys
Antimony
Environmentally friendly manufacturing techniques
Evolution
Grain boundary diffusion
Intermetallic
Intermetallic compounds
intermetallic growth
Intermetallics
Isothermal processes
Kinetic theory
Lead
lead-free solder
Metallurgy
Microstructure
Performance evaluation
Sb addition
Scanning electron microscopy
Soldering
Solders
Testing
Tin
Tin base alloys
title An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20of%20effects%20of%20Sb%20on%20the%20intermetallic%20formation%20in%20Sn-3.5Ag-0.7Cu%20solder%20joints&rft.jtitle=IEEE%20transactions%20on%20components%20and%20packaging%20technologies&rft.au=Chen,%20B.L.&rft.date=2005-09-01&rft.volume=28&rft.issue=3&rft.spage=534&rft.epage=541&rft.pages=534-541&rft.issn=1521-3331&rft.eissn=1557-9972&rft.coden=ITCPFB&rft_id=info:doi/10.1109/TCAPT.2005.848573&rft_dat=%3Cproquest_RIE%3E896169546%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869097616&rft_id=info:pmid/&rft_ieee_id=1501955&rfr_iscdi=true