A Multiscale Framework for Spatial Gamut Mapping

Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2007-10, Vol.16 (10), p.2423-2435
Hauptverfasser: Farup, I., Gatta, C., Rizzi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2435
container_issue 10
container_start_page 2423
container_title IEEE transactions on image processing
container_volume 16
creator Farup, I.
Gatta, C.
Rizzi, A.
description Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the problem of reproducing similar color images across different devices. This is well known as the gamut mapping problem. Gamut mapping algorithms have been developed mainly using colorimetric pixel-wise principles, without considering the spatial properties of the image. The recently proposed multilevel gamut mapping approach takes spatial properties into account and has been demonstrated to outperform spatially invariant approaches. However, they have some important drawbacks. To analyze these drawbacks, we build a common framework that encompasses at least two important previous multilevel gamut mapping algorithms. Then, when the causes of the drawbacks are understood, we solve the typical problem of possible hue shifts. Next, we design appropriate operators and functions to strongly reduce both haloing and possible undesired over compression. We use challenging synthetic images, as well as real photographs, to practically show that the improvements give the expected results.
doi_str_mv 10.1109/TIP.2007.904946
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896168123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4303140</ieee_id><sourcerecordid>68370581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-701f5eae196cd13b5f833b51fde3461394ae9b04963436c71261c3ea2ab63253</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun6cPQhSBPXUdaaTps1xEV0XVhTce8h2U6m225q0iP_elBYFD0KYDMyT4c3D2CnCFBHkzWrxPI0AkqkELrnYYROUHEMAHu36HuIkTJDLA3bo3BsA8hjFPjvAREbCnwmDWfDYlW3hMl2a4N7qynzW9j3Iaxu8NLotdBnMddW1waNummL7esz2cl06czLeR2x1f7e6fQiXT_PF7WwZZhx4GyaAeWy0QSmyDdI6zlPyFfONIS6QJNdGrn1oQZxElmAkMCOjI70WFMV0xK6HtY2tPzrjWlX5jKYs9dbUnVOpFChSjMiTV_-SIqUE4hQ9ePEHfKs7u_WfUKmIgYiE8NDNAGW2ds6aXDW2qLT9UgiqV668ctUrV4Ny_-J8XNutK7P55UfHHrgcAd1bzq3eZoX75SQkMWKf72zgCmPMz5gTEHKgb6Yajio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865033366</pqid></control><display><type>article</type><title>A Multiscale Framework for Spatial Gamut Mapping</title><source>IEEE Electronic Library (IEL)</source><creator>Farup, I. ; Gatta, C. ; Rizzi, A.</creator><creatorcontrib>Farup, I. ; Gatta, C. ; Rizzi, A.</creatorcontrib><description>Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the problem of reproducing similar color images across different devices. This is well known as the gamut mapping problem. Gamut mapping algorithms have been developed mainly using colorimetric pixel-wise principles, without considering the spatial properties of the image. The recently proposed multilevel gamut mapping approach takes spatial properties into account and has been demonstrated to outperform spatially invariant approaches. However, they have some important drawbacks. To analyze these drawbacks, we build a common framework that encompasses at least two important previous multilevel gamut mapping algorithms. Then, when the causes of the drawbacks are understood, we solve the typical problem of possible hue shifts. Next, we design appropriate operators and functions to strongly reduce both haloing and possible undesired over compression. We use challenging synthetic images, as well as real photographs, to practically show that the improvements give the expected results.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2007.904946</identifier><identifier>PMID: 17926926</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Color ; Colorimetry - methods ; Computer Graphics ; Construction ; Detection, estimation, filtering, equalization, prediction ; Devices ; Displays ; Exact sciences and technology ; Filtering ; Gamut ; gamut mapping ; haloing ; hue shift ; Image coding ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Mapping ; Multilevel ; multiscale ; Pixel ; Printers ; Rendering (computer graphics) ; Reproducibility of Results ; Reproduction ; Robustness ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal, noise ; spatially variant ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2007-10, Vol.16 (10), p.2423-2435</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-701f5eae196cd13b5f833b51fde3461394ae9b04963436c71261c3ea2ab63253</citedby><cites>FETCH-LOGICAL-c404t-701f5eae196cd13b5f833b51fde3461394ae9b04963436c71261c3ea2ab63253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4303140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4303140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19075111$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17926926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farup, I.</creatorcontrib><creatorcontrib>Gatta, C.</creatorcontrib><creatorcontrib>Rizzi, A.</creatorcontrib><title>A Multiscale Framework for Spatial Gamut Mapping</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the problem of reproducing similar color images across different devices. This is well known as the gamut mapping problem. Gamut mapping algorithms have been developed mainly using colorimetric pixel-wise principles, without considering the spatial properties of the image. The recently proposed multilevel gamut mapping approach takes spatial properties into account and has been demonstrated to outperform spatially invariant approaches. However, they have some important drawbacks. To analyze these drawbacks, we build a common framework that encompasses at least two important previous multilevel gamut mapping algorithms. Then, when the causes of the drawbacks are understood, we solve the typical problem of possible hue shifts. Next, we design appropriate operators and functions to strongly reduce both haloing and possible undesired over compression. We use challenging synthetic images, as well as real photographs, to practically show that the improvements give the expected results.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Color</subject><subject>Colorimetry - methods</subject><subject>Computer Graphics</subject><subject>Construction</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Devices</subject><subject>Displays</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Gamut</subject><subject>gamut mapping</subject><subject>haloing</subject><subject>hue shift</subject><subject>Image coding</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Mapping</subject><subject>Multilevel</subject><subject>multiscale</subject><subject>Pixel</subject><subject>Printers</subject><subject>Rendering (computer graphics)</subject><subject>Reproducibility of Results</subject><subject>Reproduction</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>spatially variant</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoun6cPQhSBPXUdaaTps1xEV0XVhTce8h2U6m225q0iP_elBYFD0KYDMyT4c3D2CnCFBHkzWrxPI0AkqkELrnYYROUHEMAHu36HuIkTJDLA3bo3BsA8hjFPjvAREbCnwmDWfDYlW3hMl2a4N7qynzW9j3Iaxu8NLotdBnMddW1waNummL7esz2cl06czLeR2x1f7e6fQiXT_PF7WwZZhx4GyaAeWy0QSmyDdI6zlPyFfONIS6QJNdGrn1oQZxElmAkMCOjI70WFMV0xK6HtY2tPzrjWlX5jKYs9dbUnVOpFChSjMiTV_-SIqUE4hQ9ePEHfKs7u_WfUKmIgYiE8NDNAGW2ds6aXDW2qLT9UgiqV668ctUrV4Ny_-J8XNutK7P55UfHHrgcAd1bzq3eZoX75SQkMWKf72zgCmPMz5gTEHKgb6Yajio</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Farup, I.</creator><creator>Gatta, C.</creator><creator>Rizzi, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071001</creationdate><title>A Multiscale Framework for Spatial Gamut Mapping</title><author>Farup, I. ; Gatta, C. ; Rizzi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-701f5eae196cd13b5f833b51fde3461394ae9b04963436c71261c3ea2ab63253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Color</topic><topic>Colorimetry - methods</topic><topic>Computer Graphics</topic><topic>Construction</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Devices</topic><topic>Displays</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Gamut</topic><topic>gamut mapping</topic><topic>haloing</topic><topic>hue shift</topic><topic>Image coding</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Mapping</topic><topic>Multilevel</topic><topic>multiscale</topic><topic>Pixel</topic><topic>Printers</topic><topic>Rendering (computer graphics)</topic><topic>Reproducibility of Results</topic><topic>Reproduction</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>spatially variant</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farup, I.</creatorcontrib><creatorcontrib>Gatta, C.</creatorcontrib><creatorcontrib>Rizzi, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farup, I.</au><au>Gatta, C.</au><au>Rizzi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale Framework for Spatial Gamut Mapping</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>16</volume><issue>10</issue><spage>2423</spage><epage>2435</epage><pages>2423-2435</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the problem of reproducing similar color images across different devices. This is well known as the gamut mapping problem. Gamut mapping algorithms have been developed mainly using colorimetric pixel-wise principles, without considering the spatial properties of the image. The recently proposed multilevel gamut mapping approach takes spatial properties into account and has been demonstrated to outperform spatially invariant approaches. However, they have some important drawbacks. To analyze these drawbacks, we build a common framework that encompasses at least two important previous multilevel gamut mapping algorithms. Then, when the causes of the drawbacks are understood, we solve the typical problem of possible hue shifts. Next, we design appropriate operators and functions to strongly reduce both haloing and possible undesired over compression. We use challenging synthetic images, as well as real photographs, to practically show that the improvements give the expected results.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17926926</pmid><doi>10.1109/TIP.2007.904946</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2007-10, Vol.16 (10), p.2423-2435
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_896168123
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Color
Colorimetry - methods
Computer Graphics
Construction
Detection, estimation, filtering, equalization, prediction
Devices
Displays
Exact sciences and technology
Filtering
Gamut
gamut mapping
haloing
hue shift
Image coding
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Information, signal and communications theory
Mapping
Multilevel
multiscale
Pixel
Printers
Rendering (computer graphics)
Reproducibility of Results
Reproduction
Robustness
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal, noise
spatially variant
Studies
Telecommunications and information theory
title A Multiscale Framework for Spatial Gamut Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20Framework%20for%20Spatial%20Gamut%20Mapping&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Farup,%20I.&rft.date=2007-10-01&rft.volume=16&rft.issue=10&rft.spage=2423&rft.epage=2435&rft.pages=2423-2435&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2007.904946&rft_dat=%3Cproquest_RIE%3E68370581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865033366&rft_id=info:pmid/17926926&rft_ieee_id=4303140&rfr_iscdi=true