A Multiscale Framework for Spatial Gamut Mapping
Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2007-10, Vol.16 (10), p.2423-2435 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2435 |
---|---|
container_issue | 10 |
container_start_page | 2423 |
container_title | IEEE transactions on image processing |
container_volume | 16 |
creator | Farup, I. Gatta, C. Rizzi, A. |
description | Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the problem of reproducing similar color images across different devices. This is well known as the gamut mapping problem. Gamut mapping algorithms have been developed mainly using colorimetric pixel-wise principles, without considering the spatial properties of the image. The recently proposed multilevel gamut mapping approach takes spatial properties into account and has been demonstrated to outperform spatially invariant approaches. However, they have some important drawbacks. To analyze these drawbacks, we build a common framework that encompasses at least two important previous multilevel gamut mapping algorithms. Then, when the causes of the drawbacks are understood, we solve the typical problem of possible hue shifts. Next, we design appropriate operators and functions to strongly reduce both haloing and possible undesired over compression. We use challenging synthetic images, as well as real photographs, to practically show that the improvements give the expected results. |
doi_str_mv | 10.1109/TIP.2007.904946 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896168123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4303140</ieee_id><sourcerecordid>68370581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-701f5eae196cd13b5f833b51fde3461394ae9b04963436c71261c3ea2ab63253</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun6cPQhSBPXUdaaTps1xEV0XVhTce8h2U6m225q0iP_elBYFD0KYDMyT4c3D2CnCFBHkzWrxPI0AkqkELrnYYROUHEMAHu36HuIkTJDLA3bo3BsA8hjFPjvAREbCnwmDWfDYlW3hMl2a4N7qynzW9j3Iaxu8NLotdBnMddW1waNummL7esz2cl06czLeR2x1f7e6fQiXT_PF7WwZZhx4GyaAeWy0QSmyDdI6zlPyFfONIS6QJNdGrn1oQZxElmAkMCOjI70WFMV0xK6HtY2tPzrjWlX5jKYs9dbUnVOpFChSjMiTV_-SIqUE4hQ9ePEHfKs7u_WfUKmIgYiE8NDNAGW2ds6aXDW2qLT9UgiqV668ctUrV4Ny_-J8XNutK7P55UfHHrgcAd1bzq3eZoX75SQkMWKf72zgCmPMz5gTEHKgb6Yajio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865033366</pqid></control><display><type>article</type><title>A Multiscale Framework for Spatial Gamut Mapping</title><source>IEEE Electronic Library (IEL)</source><creator>Farup, I. ; Gatta, C. ; Rizzi, A.</creator><creatorcontrib>Farup, I. ; Gatta, C. ; Rizzi, A.</creatorcontrib><description>Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the problem of reproducing similar color images across different devices. This is well known as the gamut mapping problem. Gamut mapping algorithms have been developed mainly using colorimetric pixel-wise principles, without considering the spatial properties of the image. The recently proposed multilevel gamut mapping approach takes spatial properties into account and has been demonstrated to outperform spatially invariant approaches. However, they have some important drawbacks. To analyze these drawbacks, we build a common framework that encompasses at least two important previous multilevel gamut mapping algorithms. Then, when the causes of the drawbacks are understood, we solve the typical problem of possible hue shifts. Next, we design appropriate operators and functions to strongly reduce both haloing and possible undesired over compression. We use challenging synthetic images, as well as real photographs, to practically show that the improvements give the expected results.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2007.904946</identifier><identifier>PMID: 17926926</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Color ; Colorimetry - methods ; Computer Graphics ; Construction ; Detection, estimation, filtering, equalization, prediction ; Devices ; Displays ; Exact sciences and technology ; Filtering ; Gamut ; gamut mapping ; haloing ; hue shift ; Image coding ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Mapping ; Multilevel ; multiscale ; Pixel ; Printers ; Rendering (computer graphics) ; Reproducibility of Results ; Reproduction ; Robustness ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal, noise ; spatially variant ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2007-10, Vol.16 (10), p.2423-2435</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-701f5eae196cd13b5f833b51fde3461394ae9b04963436c71261c3ea2ab63253</citedby><cites>FETCH-LOGICAL-c404t-701f5eae196cd13b5f833b51fde3461394ae9b04963436c71261c3ea2ab63253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4303140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4303140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19075111$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17926926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farup, I.</creatorcontrib><creatorcontrib>Gatta, C.</creatorcontrib><creatorcontrib>Rizzi, A.</creatorcontrib><title>A Multiscale Framework for Spatial Gamut Mapping</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the problem of reproducing similar color images across different devices. This is well known as the gamut mapping problem. Gamut mapping algorithms have been developed mainly using colorimetric pixel-wise principles, without considering the spatial properties of the image. The recently proposed multilevel gamut mapping approach takes spatial properties into account and has been demonstrated to outperform spatially invariant approaches. However, they have some important drawbacks. To analyze these drawbacks, we build a common framework that encompasses at least two important previous multilevel gamut mapping algorithms. Then, when the causes of the drawbacks are understood, we solve the typical problem of possible hue shifts. Next, we design appropriate operators and functions to strongly reduce both haloing and possible undesired over compression. We use challenging synthetic images, as well as real photographs, to practically show that the improvements give the expected results.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Color</subject><subject>Colorimetry - methods</subject><subject>Computer Graphics</subject><subject>Construction</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Devices</subject><subject>Displays</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Gamut</subject><subject>gamut mapping</subject><subject>haloing</subject><subject>hue shift</subject><subject>Image coding</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Mapping</subject><subject>Multilevel</subject><subject>multiscale</subject><subject>Pixel</subject><subject>Printers</subject><subject>Rendering (computer graphics)</subject><subject>Reproducibility of Results</subject><subject>Reproduction</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>spatially variant</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoun6cPQhSBPXUdaaTps1xEV0XVhTce8h2U6m225q0iP_elBYFD0KYDMyT4c3D2CnCFBHkzWrxPI0AkqkELrnYYROUHEMAHu36HuIkTJDLA3bo3BsA8hjFPjvAREbCnwmDWfDYlW3hMl2a4N7qynzW9j3Iaxu8NLotdBnMddW1waNummL7esz2cl06czLeR2x1f7e6fQiXT_PF7WwZZhx4GyaAeWy0QSmyDdI6zlPyFfONIS6QJNdGrn1oQZxElmAkMCOjI70WFMV0xK6HtY2tPzrjWlX5jKYs9dbUnVOpFChSjMiTV_-SIqUE4hQ9ePEHfKs7u_WfUKmIgYiE8NDNAGW2ds6aXDW2qLT9UgiqV668ctUrV4Ny_-J8XNutK7P55UfHHrgcAd1bzq3eZoX75SQkMWKf72zgCmPMz5gTEHKgb6Yajio</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Farup, I.</creator><creator>Gatta, C.</creator><creator>Rizzi, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071001</creationdate><title>A Multiscale Framework for Spatial Gamut Mapping</title><author>Farup, I. ; Gatta, C. ; Rizzi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-701f5eae196cd13b5f833b51fde3461394ae9b04963436c71261c3ea2ab63253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Color</topic><topic>Colorimetry - methods</topic><topic>Computer Graphics</topic><topic>Construction</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Devices</topic><topic>Displays</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Gamut</topic><topic>gamut mapping</topic><topic>haloing</topic><topic>hue shift</topic><topic>Image coding</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Mapping</topic><topic>Multilevel</topic><topic>multiscale</topic><topic>Pixel</topic><topic>Printers</topic><topic>Rendering (computer graphics)</topic><topic>Reproducibility of Results</topic><topic>Reproduction</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>spatially variant</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farup, I.</creatorcontrib><creatorcontrib>Gatta, C.</creatorcontrib><creatorcontrib>Rizzi, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farup, I.</au><au>Gatta, C.</au><au>Rizzi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale Framework for Spatial Gamut Mapping</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>16</volume><issue>10</issue><spage>2423</spage><epage>2435</epage><pages>2423-2435</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Image reproduction devices, such as displays or printers, can reproduce only a limited set of colors, denoted the color gamut. The gamut depends on both theoretical and technical limitations. Reproduction device gamuts are significantly different from acquisition device gamuts. These facts raise the problem of reproducing similar color images across different devices. This is well known as the gamut mapping problem. Gamut mapping algorithms have been developed mainly using colorimetric pixel-wise principles, without considering the spatial properties of the image. The recently proposed multilevel gamut mapping approach takes spatial properties into account and has been demonstrated to outperform spatially invariant approaches. However, they have some important drawbacks. To analyze these drawbacks, we build a common framework that encompasses at least two important previous multilevel gamut mapping algorithms. Then, when the causes of the drawbacks are understood, we solve the typical problem of possible hue shifts. Next, we design appropriate operators and functions to strongly reduce both haloing and possible undesired over compression. We use challenging synthetic images, as well as real photographs, to practically show that the improvements give the expected results.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17926926</pmid><doi>10.1109/TIP.2007.904946</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2007-10, Vol.16 (10), p.2423-2435 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_896168123 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Applied sciences Color Colorimetry - methods Computer Graphics Construction Detection, estimation, filtering, equalization, prediction Devices Displays Exact sciences and technology Filtering Gamut gamut mapping haloing hue shift Image coding Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Information, signal and communications theory Mapping Multilevel multiscale Pixel Printers Rendering (computer graphics) Reproducibility of Results Reproduction Robustness Sensitivity and Specificity Signal and communications theory Signal processing Signal, noise spatially variant Studies Telecommunications and information theory |
title | A Multiscale Framework for Spatial Gamut Mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20Framework%20for%20Spatial%20Gamut%20Mapping&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Farup,%20I.&rft.date=2007-10-01&rft.volume=16&rft.issue=10&rft.spage=2423&rft.epage=2435&rft.pages=2423-2435&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2007.904946&rft_dat=%3Cproquest_RIE%3E68370581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865033366&rft_id=info:pmid/17926926&rft_ieee_id=4303140&rfr_iscdi=true |