Social Media Analytics for Radical Opinion Mining in Hate Group Web Forums

Web forums are frequently used as platforms for the exchange of information and opinions as well as propaganda dissemination. But online content can be misused when the information being distributed, such as radical opinions, is unsolicited or inappropriate. This study introduces a technique that co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of homeland security and emergency management 2011-01, Vol.8 (1), p.1
Hauptverfasser: Yang, Ming, Kiang, Melody, Ku, Yungchang, Chiu, Chaochang, Li, Yijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Journal of homeland security and emergency management
container_volume 8
creator Yang, Ming
Kiang, Melody
Ku, Yungchang
Chiu, Chaochang
Li, Yijun
description Web forums are frequently used as platforms for the exchange of information and opinions as well as propaganda dissemination. But online content can be misused when the information being distributed, such as radical opinions, is unsolicited or inappropriate. This study introduces a technique that combines machine learning and semantic-oriented approaches to identify radical opinions in hate group Web forums. Four types of text features (syntactic, stylistic, content-specific, and lexicon features) are extracted as text classification predictors, and three classification techniques (SVM, Naïve Bayes, and Adaboost) are implemented. Postings from two hate group Web forums are collected and the preliminary results are encouraging. In addition, cross-validation indicates the proposed technique is stable and extendible to timeframes beyond that of the training data. The proposed technique can also be an effective tool for other sentiment classification problems.
doi_str_mv 10.2202/1547-7355.1801
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896018113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596575151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-312d01915a24cab2eddd315b9606bd2e76489afa5a92dbd1c9fb2a6a2a75ac4a3</originalsourceid><addsrcrecordid>eNp1kEFvFCEYhonRxLV69Uz04GlWPhiY4dis3VbTplHXeCTfANNQZ4cVZqL772WypiZGTx-B53mBl5CXwNacM_4WZN1UjZByDS2DR2T1sPGYrDjoulJCwVPyLOd7xrgUTKzIh8_RBhzojXcB6fmIw3EKNtM-JvoJXbDl7PYQxhBHelPGeEfDSK9w8vQyxflAv_qObmOa9_k5edLjkP2L3_OMfNle7DZX1fXt5fvN-XVlaxBTJYA7Bhok8tpix71zToDstGKqc9w3qm419ihRc9c5sLrvOCrk2Ei0NYoz8uaUe0jx--zzZPYhWz8MOPo4Z9OWJGgBRCFf_UXexzmVP2ajuWgkU1oX6PX_IF4zxqSSLSvU-kTZFHNOvjeHFPaYjgaYWeo3S9tmadss9RehPQk_cJh8cv4uzcey-JP-b7Fd1Oqkhjz5nw8XYfpmVFOebT7uarPdSGC7d2BA_AJeBpXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400056580</pqid></control><display><type>article</type><title>Social Media Analytics for Radical Opinion Mining in Hate Group Web Forums</title><source>Worldwide Political Science Abstracts</source><source>De Gruyter journals</source><creator>Yang, Ming ; Kiang, Melody ; Ku, Yungchang ; Chiu, Chaochang ; Li, Yijun</creator><creatorcontrib>Yang, Ming ; Kiang, Melody ; Ku, Yungchang ; Chiu, Chaochang ; Li, Yijun</creatorcontrib><description>Web forums are frequently used as platforms for the exchange of information and opinions as well as propaganda dissemination. But online content can be misused when the information being distributed, such as radical opinions, is unsolicited or inappropriate. This study introduces a technique that combines machine learning and semantic-oriented approaches to identify radical opinions in hate group Web forums. Four types of text features (syntactic, stylistic, content-specific, and lexicon features) are extracted as text classification predictors, and three classification techniques (SVM, Naïve Bayes, and Adaboost) are implemented. Postings from two hate group Web forums are collected and the preliminary results are encouraging. In addition, cross-validation indicates the proposed technique is stable and extendible to timeframes beyond that of the training data. The proposed technique can also be an effective tool for other sentiment classification problems.</description><identifier>ISSN: 2194-6361</identifier><identifier>ISSN: 1547-7355</identifier><identifier>EISSN: 1547-7355</identifier><identifier>DOI: 10.2202/1547-7355.1801</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Bayesian analysis ; Classification ; Cognitive style ; Communication ; Data mining ; Digital media ; Discourse analysis ; Dissemination ; Feature extraction ; Hate ; Hatred ; Inappropriateness ; Internet ; Learning algorithms ; Machine learning ; Mining ; National security ; Opinion ; Propaganda ; Public opinion ; radical opinion mining ; Radicalism ; Sentiment analysis ; sentiment classification ; Social media ; social media analytics ; Social networks ; Validity ; Web analytics ; Web forums ; Webs</subject><ispartof>Journal of homeland security and emergency management, 2011-01, Vol.8 (1), p.1</ispartof><rights>2011 Walter de Gruyter GmbH &amp; Co. KG, Berlin/Boston</rights><rights>Copyright Berkeley Electronic Press Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-312d01915a24cab2eddd315b9606bd2e76489afa5a92dbd1c9fb2a6a2a75ac4a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.2202/1547-7355.1801/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.2202/1547-7355.1801/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Kiang, Melody</creatorcontrib><creatorcontrib>Ku, Yungchang</creatorcontrib><creatorcontrib>Chiu, Chaochang</creatorcontrib><creatorcontrib>Li, Yijun</creatorcontrib><title>Social Media Analytics for Radical Opinion Mining in Hate Group Web Forums</title><title>Journal of homeland security and emergency management</title><description>Web forums are frequently used as platforms for the exchange of information and opinions as well as propaganda dissemination. But online content can be misused when the information being distributed, such as radical opinions, is unsolicited or inappropriate. This study introduces a technique that combines machine learning and semantic-oriented approaches to identify radical opinions in hate group Web forums. Four types of text features (syntactic, stylistic, content-specific, and lexicon features) are extracted as text classification predictors, and three classification techniques (SVM, Naïve Bayes, and Adaboost) are implemented. Postings from two hate group Web forums are collected and the preliminary results are encouraging. In addition, cross-validation indicates the proposed technique is stable and extendible to timeframes beyond that of the training data. The proposed technique can also be an effective tool for other sentiment classification problems.</description><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Cognitive style</subject><subject>Communication</subject><subject>Data mining</subject><subject>Digital media</subject><subject>Discourse analysis</subject><subject>Dissemination</subject><subject>Feature extraction</subject><subject>Hate</subject><subject>Hatred</subject><subject>Inappropriateness</subject><subject>Internet</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mining</subject><subject>National security</subject><subject>Opinion</subject><subject>Propaganda</subject><subject>Public opinion</subject><subject>radical opinion mining</subject><subject>Radicalism</subject><subject>Sentiment analysis</subject><subject>sentiment classification</subject><subject>Social media</subject><subject>social media analytics</subject><subject>Social networks</subject><subject>Validity</subject><subject>Web analytics</subject><subject>Web forums</subject><subject>Webs</subject><issn>2194-6361</issn><issn>1547-7355</issn><issn>1547-7355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp1kEFvFCEYhonRxLV69Uz04GlWPhiY4dis3VbTplHXeCTfANNQZ4cVZqL772WypiZGTx-B53mBl5CXwNacM_4WZN1UjZByDS2DR2T1sPGYrDjoulJCwVPyLOd7xrgUTKzIh8_RBhzojXcB6fmIw3EKNtM-JvoJXbDl7PYQxhBHelPGeEfDSK9w8vQyxflAv_qObmOa9_k5edLjkP2L3_OMfNle7DZX1fXt5fvN-XVlaxBTJYA7Bhok8tpix71zToDstGKqc9w3qm419ihRc9c5sLrvOCrk2Ei0NYoz8uaUe0jx--zzZPYhWz8MOPo4Z9OWJGgBRCFf_UXexzmVP2ajuWgkU1oX6PX_IF4zxqSSLSvU-kTZFHNOvjeHFPaYjgaYWeo3S9tmadss9RehPQk_cJh8cv4uzcey-JP-b7Fd1Oqkhjz5nw8XYfpmVFOebT7uarPdSGC7d2BA_AJeBpXY</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Yang, Ming</creator><creator>Kiang, Melody</creator><creator>Ku, Yungchang</creator><creator>Chiu, Chaochang</creator><creator>Li, Yijun</creator><general>De Gruyter</general><general>Walter De Gruyter &amp; Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7UB</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H8D</scope><scope>JBE</scope><scope>JG9</scope><scope>K7.</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110101</creationdate><title>Social Media Analytics for Radical Opinion Mining in Hate Group Web Forums</title><author>Yang, Ming ; Kiang, Melody ; Ku, Yungchang ; Chiu, Chaochang ; Li, Yijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-312d01915a24cab2eddd315b9606bd2e76489afa5a92dbd1c9fb2a6a2a75ac4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Cognitive style</topic><topic>Communication</topic><topic>Data mining</topic><topic>Digital media</topic><topic>Discourse analysis</topic><topic>Dissemination</topic><topic>Feature extraction</topic><topic>Hate</topic><topic>Hatred</topic><topic>Inappropriateness</topic><topic>Internet</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mining</topic><topic>National security</topic><topic>Opinion</topic><topic>Propaganda</topic><topic>Public opinion</topic><topic>radical opinion mining</topic><topic>Radicalism</topic><topic>Sentiment analysis</topic><topic>sentiment classification</topic><topic>Social media</topic><topic>social media analytics</topic><topic>Social networks</topic><topic>Validity</topic><topic>Web analytics</topic><topic>Web forums</topic><topic>Webs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Kiang, Melody</creatorcontrib><creatorcontrib>Ku, Yungchang</creatorcontrib><creatorcontrib>Chiu, Chaochang</creatorcontrib><creatorcontrib>Li, Yijun</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of homeland security and emergency management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ming</au><au>Kiang, Melody</au><au>Ku, Yungchang</au><au>Chiu, Chaochang</au><au>Li, Yijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social Media Analytics for Radical Opinion Mining in Hate Group Web Forums</atitle><jtitle>Journal of homeland security and emergency management</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>8</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>2194-6361</issn><issn>1547-7355</issn><eissn>1547-7355</eissn><abstract>Web forums are frequently used as platforms for the exchange of information and opinions as well as propaganda dissemination. But online content can be misused when the information being distributed, such as radical opinions, is unsolicited or inappropriate. This study introduces a technique that combines machine learning and semantic-oriented approaches to identify radical opinions in hate group Web forums. Four types of text features (syntactic, stylistic, content-specific, and lexicon features) are extracted as text classification predictors, and three classification techniques (SVM, Naïve Bayes, and Adaboost) are implemented. Postings from two hate group Web forums are collected and the preliminary results are encouraging. In addition, cross-validation indicates the proposed technique is stable and extendible to timeframes beyond that of the training data. The proposed technique can also be an effective tool for other sentiment classification problems.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.2202/1547-7355.1801</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2194-6361
ispartof Journal of homeland security and emergency management, 2011-01, Vol.8 (1), p.1
issn 2194-6361
1547-7355
1547-7355
language eng
recordid cdi_proquest_miscellaneous_896018113
source Worldwide Political Science Abstracts; De Gruyter journals
subjects Bayesian analysis
Classification
Cognitive style
Communication
Data mining
Digital media
Discourse analysis
Dissemination
Feature extraction
Hate
Hatred
Inappropriateness
Internet
Learning algorithms
Machine learning
Mining
National security
Opinion
Propaganda
Public opinion
radical opinion mining
Radicalism
Sentiment analysis
sentiment classification
Social media
social media analytics
Social networks
Validity
Web analytics
Web forums
Webs
title Social Media Analytics for Radical Opinion Mining in Hate Group Web Forums
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20Media%20Analytics%20for%20Radical%20Opinion%20Mining%20in%20Hate%20Group%20Web%20Forums&rft.jtitle=Journal%20of%20homeland%20security%20and%20emergency%20management&rft.au=Yang,%20Ming&rft.date=2011-01-01&rft.volume=8&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=2194-6361&rft.eissn=1547-7355&rft_id=info:doi/10.2202/1547-7355.1801&rft_dat=%3Cproquest_cross%3E2596575151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400056580&rft_id=info:pmid/&rfr_iscdi=true