MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo

RATIONALE:MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. OBJECTIVE:The aim of the present study was to evaluate the role, if any, of miR-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2011-09, Vol.109 (8), p.880-893
Hauptverfasser: Torella, Daniele, Iaconetti, Claudio, Catalucci, Daniele, Ellison, Georgina M, Leone, Angelo, Waring, Cheryl D, Bochicchio, Angela, Vicinanza, Carla, Aquila, Iolanda, Curcio, Antonio, Condorelli, Gianluigi, Indolfi, Ciro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 893
container_issue 8
container_start_page 880
container_title Circulation research
container_volume 109
creator Torella, Daniele
Iaconetti, Claudio
Catalucci, Daniele
Ellison, Georgina M
Leone, Angelo
Waring, Cheryl D
Bochicchio, Angela
Vicinanza, Carla
Aquila, Iolanda
Curcio, Antonio
Condorelli, Gianluigi
Indolfi, Ciro
description RATIONALE:MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. OBJECTIVE:The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. METHODS AND RESULTS:We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal–regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. CONCLUSIONS:Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.
doi_str_mv 10.1161/CIRCRESAHA.111.240150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_895858773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1468366945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5290-166b44a20aea8fe85199a6ab53fdad7dbb887005ae9bcb073bcde126d7abc27a3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EosPAI4C8QXSTcq9_kng5iko7UgtoBrqNHMchASce4oRR3x6jDMyOlXWt89lX3yHkNcIVYorvi-2u2F3vN7ebOOMVE4ASnpAVSiYSITN8SlYAoJKMc7ggL0L4DoCCM_WcXDDMJZMSVsTdd2b0u4-bBDmnhR-m0btAH3Qws9Mj3ffeTy29n4NxlhbWOfq5tYOfHg-doftjN5mWbgf60MUg1UN9ju5s72vruuHbAvzyL8mzRrtgX53ONfn64fpLcZvcfbrZFpu7xEimIME0rYTQDLTVeWNziUrpVFeSN7Wus7qq8jwDkNqqylSQ8crUFllaZ7oyLNN8Td4t7x5G_3O2YSr7Lpi4ux6sn0OZK5nLPIvNrMnlf0kUac7TVAkZUbmgsa8QRtuUh7Hr9fhYIpR_lJRnJXHGclESc29OX8xVb-t_qb8OIvD2BMTmtGtGPZgunDkhlWJKRU4s3NG7yY7hh5uPdixbq93UltE1cECWMEAExQGSeIPAfwNUy6Q1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468366945</pqid></control><display><type>article</type><title>MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Torella, Daniele ; Iaconetti, Claudio ; Catalucci, Daniele ; Ellison, Georgina M ; Leone, Angelo ; Waring, Cheryl D ; Bochicchio, Angela ; Vicinanza, Carla ; Aquila, Iolanda ; Curcio, Antonio ; Condorelli, Gianluigi ; Indolfi, Ciro</creator><creatorcontrib>Torella, Daniele ; Iaconetti, Claudio ; Catalucci, Daniele ; Ellison, Georgina M ; Leone, Angelo ; Waring, Cheryl D ; Bochicchio, Angela ; Vicinanza, Carla ; Aquila, Iolanda ; Curcio, Antonio ; Condorelli, Gianluigi ; Indolfi, Ciro</creatorcontrib><description>RATIONALE:MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. OBJECTIVE:The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. METHODS AND RESULTS:We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal–regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. CONCLUSIONS:Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.111.240150</identifier><identifier>PMID: 21852550</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Animals ; Biological and medical sciences ; Cardiac muscle ; Carotid Artery Injuries - genetics ; Carotid Artery Injuries - pathology ; Cell Proliferation ; Fundamental and applied biological sciences. Psychology ; Male ; MicroRNAs - physiology ; Muscle, Smooth, Vascular - pathology ; Muscle, Smooth, Vascular - physiology ; Myocytes, Smooth Muscle - pathology ; Myocytes, Smooth Muscle - physiology ; Phenotype ; Rats ; Rats, Wistar ; Vertebrates: cardiovascular system</subject><ispartof>Circulation research, 2011-09, Vol.109 (8), p.880-893</ispartof><rights>2011 American Heart Association, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5290-166b44a20aea8fe85199a6ab53fdad7dbb887005ae9bcb073bcde126d7abc27a3</citedby><cites>FETCH-LOGICAL-c5290-166b44a20aea8fe85199a6ab53fdad7dbb887005ae9bcb073bcde126d7abc27a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3674,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24599299$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21852550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torella, Daniele</creatorcontrib><creatorcontrib>Iaconetti, Claudio</creatorcontrib><creatorcontrib>Catalucci, Daniele</creatorcontrib><creatorcontrib>Ellison, Georgina M</creatorcontrib><creatorcontrib>Leone, Angelo</creatorcontrib><creatorcontrib>Waring, Cheryl D</creatorcontrib><creatorcontrib>Bochicchio, Angela</creatorcontrib><creatorcontrib>Vicinanza, Carla</creatorcontrib><creatorcontrib>Aquila, Iolanda</creatorcontrib><creatorcontrib>Curcio, Antonio</creatorcontrib><creatorcontrib>Condorelli, Gianluigi</creatorcontrib><creatorcontrib>Indolfi, Ciro</creatorcontrib><title>MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>RATIONALE:MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. OBJECTIVE:The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. METHODS AND RESULTS:We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal–regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. CONCLUSIONS:Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cardiac muscle</subject><subject>Carotid Artery Injuries - genetics</subject><subject>Carotid Artery Injuries - pathology</subject><subject>Cell Proliferation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Male</subject><subject>MicroRNAs - physiology</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Muscle, Smooth, Vascular - physiology</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>Myocytes, Smooth Muscle - physiology</subject><subject>Phenotype</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Vertebrates: cardiovascular system</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi0EosPAI4C8QXSTcq9_kng5iko7UgtoBrqNHMchASce4oRR3x6jDMyOlXWt89lX3yHkNcIVYorvi-2u2F3vN7ebOOMVE4ASnpAVSiYSITN8SlYAoJKMc7ggL0L4DoCCM_WcXDDMJZMSVsTdd2b0u4-bBDmnhR-m0btAH3Qws9Mj3ffeTy29n4NxlhbWOfq5tYOfHg-doftjN5mWbgf60MUg1UN9ju5s72vruuHbAvzyL8mzRrtgX53ONfn64fpLcZvcfbrZFpu7xEimIME0rYTQDLTVeWNziUrpVFeSN7Wus7qq8jwDkNqqylSQ8crUFllaZ7oyLNN8Td4t7x5G_3O2YSr7Lpi4ux6sn0OZK5nLPIvNrMnlf0kUac7TVAkZUbmgsa8QRtuUh7Hr9fhYIpR_lJRnJXHGclESc29OX8xVb-t_qb8OIvD2BMTmtGtGPZgunDkhlWJKRU4s3NG7yY7hh5uPdixbq93UltE1cECWMEAExQGSeIPAfwNUy6Q1</recordid><startdate>20110930</startdate><enddate>20110930</enddate><creator>Torella, Daniele</creator><creator>Iaconetti, Claudio</creator><creator>Catalucci, Daniele</creator><creator>Ellison, Georgina M</creator><creator>Leone, Angelo</creator><creator>Waring, Cheryl D</creator><creator>Bochicchio, Angela</creator><creator>Vicinanza, Carla</creator><creator>Aquila, Iolanda</creator><creator>Curcio, Antonio</creator><creator>Condorelli, Gianluigi</creator><creator>Indolfi, Ciro</creator><general>American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20110930</creationdate><title>MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo</title><author>Torella, Daniele ; Iaconetti, Claudio ; Catalucci, Daniele ; Ellison, Georgina M ; Leone, Angelo ; Waring, Cheryl D ; Bochicchio, Angela ; Vicinanza, Carla ; Aquila, Iolanda ; Curcio, Antonio ; Condorelli, Gianluigi ; Indolfi, Ciro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5290-166b44a20aea8fe85199a6ab53fdad7dbb887005ae9bcb073bcde126d7abc27a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cardiac muscle</topic><topic>Carotid Artery Injuries - genetics</topic><topic>Carotid Artery Injuries - pathology</topic><topic>Cell Proliferation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Male</topic><topic>MicroRNAs - physiology</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Muscle, Smooth, Vascular - physiology</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>Myocytes, Smooth Muscle - physiology</topic><topic>Phenotype</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torella, Daniele</creatorcontrib><creatorcontrib>Iaconetti, Claudio</creatorcontrib><creatorcontrib>Catalucci, Daniele</creatorcontrib><creatorcontrib>Ellison, Georgina M</creatorcontrib><creatorcontrib>Leone, Angelo</creatorcontrib><creatorcontrib>Waring, Cheryl D</creatorcontrib><creatorcontrib>Bochicchio, Angela</creatorcontrib><creatorcontrib>Vicinanza, Carla</creatorcontrib><creatorcontrib>Aquila, Iolanda</creatorcontrib><creatorcontrib>Curcio, Antonio</creatorcontrib><creatorcontrib>Condorelli, Gianluigi</creatorcontrib><creatorcontrib>Indolfi, Ciro</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torella, Daniele</au><au>Iaconetti, Claudio</au><au>Catalucci, Daniele</au><au>Ellison, Georgina M</au><au>Leone, Angelo</au><au>Waring, Cheryl D</au><au>Bochicchio, Angela</au><au>Vicinanza, Carla</au><au>Aquila, Iolanda</au><au>Curcio, Antonio</au><au>Condorelli, Gianluigi</au><au>Indolfi, Ciro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2011-09-30</date><risdate>2011</risdate><volume>109</volume><issue>8</issue><spage>880</spage><epage>893</epage><pages>880-893</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>RATIONALE:MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. OBJECTIVE:The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. METHODS AND RESULTS:We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal–regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. CONCLUSIONS:Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>21852550</pmid><doi>10.1161/CIRCRESAHA.111.240150</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2011-09, Vol.109 (8), p.880-893
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_895858773
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Animals
Biological and medical sciences
Cardiac muscle
Carotid Artery Injuries - genetics
Carotid Artery Injuries - pathology
Cell Proliferation
Fundamental and applied biological sciences. Psychology
Male
MicroRNAs - physiology
Muscle, Smooth, Vascular - pathology
Muscle, Smooth, Vascular - physiology
Myocytes, Smooth Muscle - pathology
Myocytes, Smooth Muscle - physiology
Phenotype
Rats
Rats, Wistar
Vertebrates: cardiovascular system
title MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-133%20Controls%20Vascular%20Smooth%20Muscle%20Cell%20Phenotypic%20Switch%20In%20Vitro%20and%20Vascular%20Remodeling%20In%20Vivo&rft.jtitle=Circulation%20research&rft.au=Torella,%20Daniele&rft.date=2011-09-30&rft.volume=109&rft.issue=8&rft.spage=880&rft.epage=893&rft.pages=880-893&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/CIRCRESAHA.111.240150&rft_dat=%3Cproquest_cross%3E1468366945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468366945&rft_id=info:pmid/21852550&rfr_iscdi=true