Trans-splicing
Trans‐splicing is the joining together of portions of two separate pre‐mRNA molecules. The two distinct categories of spliceosomal trans‐splicing are genic trans‐splicing, which joins exons of different pre‐mRNA transcripts, and spliced leader (SL) trans‐splicing, which involves an exon donated from...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. RNA 2011-05, Vol.2 (3), p.417-434 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 434 |
---|---|
container_issue | 3 |
container_start_page | 417 |
container_title | Wiley interdisciplinary reviews. RNA |
container_volume | 2 |
creator | Lasda, Erika L. Blumenthal, Thomas |
description | Trans‐splicing is the joining together of portions of two separate pre‐mRNA molecules. The two distinct categories of spliceosomal trans‐splicing are genic trans‐splicing, which joins exons of different pre‐mRNA transcripts, and spliced leader (SL) trans‐splicing, which involves an exon donated from a specialized SL RNA. Both depend primarily on the same signals and components as cis‐splicing. Genic trans‐splicing events producing protein‐coding mRNAs have been described in a variety of organisms, including Caenorhabditis elegans and Drosophila. In mammalian cells, genic trans‐splicing can be associated with cancers and translocations. SL trans‐splicing has mainly been studied in nematodes and trypanosomes, but there are now numerous and diverse phyla (including primitive chordates) where this type of trans‐splicing has been detected. Such diversity raises questions as to the evolutionary origin of the process. Another intriguing question concerns the function of trans‐splicing, as operon resolution can only account for a small proportion of the total amount of SL trans‐splicing. WIREs RNA 2011 2 417–434 DOI: 10.1002/wrna.71
This article is categorized under:
RNA Processing > Splicing Mechanisms
RNA Processing > Splicing Regulation/Alternative Splicing |
doi_str_mv | 10.1002/wrna.71 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_895855868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006739630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4481-6b28d4c2d2826e18d74b3af8295ea7995de14016e6b3ac1cb0b9f1d73ef01bc03</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MobszpN_DFBx-kM5c2TfI4h6vCmDAnA19CmqbS2bUzWZn79mZuDhG8l7uEHz_u_ghdAO4BxuR2bSvVY3CE2sAoCxgGcnyYcdRCXefm2FeECQM4RS0CgjL_aKPzqVWVC9yyLHRRvZ2hk1yVznT3vYNehvfTwUMwekoeB_1RoKOIQxCnhGeRJhnhJDbAMxaloco5EdQoJgTNDEQYYhP7bw06xanIIWOhyTGkGocddL3zLm390Ri3kovCaVOWqjJ14yQXlFPKY-7Jqz_kvG78waWTBOOYhSIOf_m0rZ2zJpdLWyyU3UjAchuS3IYkGXjycu9r0oXJDtxPJB642QHrojSb_zxyNhn3v3XBji7cynweaGXfpd-NUTkbJ3LyOh0myTOXd-EXo3l8MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006739630</pqid></control><display><type>article</type><title>Trans-splicing</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>Lasda, Erika L. ; Blumenthal, Thomas</creator><creatorcontrib>Lasda, Erika L. ; Blumenthal, Thomas</creatorcontrib><description>Trans‐splicing is the joining together of portions of two separate pre‐mRNA molecules. The two distinct categories of spliceosomal trans‐splicing are genic trans‐splicing, which joins exons of different pre‐mRNA transcripts, and spliced leader (SL) trans‐splicing, which involves an exon donated from a specialized SL RNA. Both depend primarily on the same signals and components as cis‐splicing. Genic trans‐splicing events producing protein‐coding mRNAs have been described in a variety of organisms, including Caenorhabditis elegans and Drosophila. In mammalian cells, genic trans‐splicing can be associated with cancers and translocations. SL trans‐splicing has mainly been studied in nematodes and trypanosomes, but there are now numerous and diverse phyla (including primitive chordates) where this type of trans‐splicing has been detected. Such diversity raises questions as to the evolutionary origin of the process. Another intriguing question concerns the function of trans‐splicing, as operon resolution can only account for a small proportion of the total amount of SL trans‐splicing. WIREs RNA 2011 2 417–434 DOI: 10.1002/wrna.71
This article is categorized under:
RNA Processing > Splicing Mechanisms
RNA Processing > Splicing Regulation/Alternative Splicing</description><identifier>ISSN: 1757-7004</identifier><identifier>EISSN: 1757-7012</identifier><identifier>DOI: 10.1002/wrna.71</identifier><identifier>PMID: 21957027</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>5' Untranslated Regions ; Alternative splicing ; Animals ; Base Sequence ; Evolution, Molecular ; Exons ; Mammalian cells ; Models, Biological ; Molecular Sequence Data ; Nucleic Acid Conformation ; Operon ; Phylogeny ; RNA Precursors - genetics ; RNA Precursors - metabolism ; RNA processing ; RNA Stability ; RNA, Spliced Leader - chemistry ; RNA, Spliced Leader - genetics ; RNA, Spliced Leader - metabolism ; Spliceosomes - metabolism ; Trans-Splicing - genetics ; Trans-Splicing - physiology ; Translocation</subject><ispartof>Wiley interdisciplinary reviews. RNA, 2011-05, Vol.2 (3), p.417-434</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. May/Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4481-6b28d4c2d2826e18d74b3af8295ea7995de14016e6b3ac1cb0b9f1d73ef01bc03</citedby><cites>FETCH-LOGICAL-c4481-6b28d4c2d2826e18d74b3af8295ea7995de14016e6b3ac1cb0b9f1d73ef01bc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwrna.71$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwrna.71$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21957027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lasda, Erika L.</creatorcontrib><creatorcontrib>Blumenthal, Thomas</creatorcontrib><title>Trans-splicing</title><title>Wiley interdisciplinary reviews. RNA</title><addtitle>WIREs RNA</addtitle><description>Trans‐splicing is the joining together of portions of two separate pre‐mRNA molecules. The two distinct categories of spliceosomal trans‐splicing are genic trans‐splicing, which joins exons of different pre‐mRNA transcripts, and spliced leader (SL) trans‐splicing, which involves an exon donated from a specialized SL RNA. Both depend primarily on the same signals and components as cis‐splicing. Genic trans‐splicing events producing protein‐coding mRNAs have been described in a variety of organisms, including Caenorhabditis elegans and Drosophila. In mammalian cells, genic trans‐splicing can be associated with cancers and translocations. SL trans‐splicing has mainly been studied in nematodes and trypanosomes, but there are now numerous and diverse phyla (including primitive chordates) where this type of trans‐splicing has been detected. Such diversity raises questions as to the evolutionary origin of the process. Another intriguing question concerns the function of trans‐splicing, as operon resolution can only account for a small proportion of the total amount of SL trans‐splicing. WIREs RNA 2011 2 417–434 DOI: 10.1002/wrna.71
This article is categorized under:
RNA Processing > Splicing Mechanisms
RNA Processing > Splicing Regulation/Alternative Splicing</description><subject>5' Untranslated Regions</subject><subject>Alternative splicing</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Evolution, Molecular</subject><subject>Exons</subject><subject>Mammalian cells</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Operon</subject><subject>Phylogeny</subject><subject>RNA Precursors - genetics</subject><subject>RNA Precursors - metabolism</subject><subject>RNA processing</subject><subject>RNA Stability</subject><subject>RNA, Spliced Leader - chemistry</subject><subject>RNA, Spliced Leader - genetics</subject><subject>RNA, Spliced Leader - metabolism</subject><subject>Spliceosomes - metabolism</subject><subject>Trans-Splicing - genetics</subject><subject>Trans-Splicing - physiology</subject><subject>Translocation</subject><issn>1757-7004</issn><issn>1757-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kFFLwzAQx4MobszpN_DFBx-kM5c2TfI4h6vCmDAnA19CmqbS2bUzWZn79mZuDhG8l7uEHz_u_ghdAO4BxuR2bSvVY3CE2sAoCxgGcnyYcdRCXefm2FeECQM4RS0CgjL_aKPzqVWVC9yyLHRRvZ2hk1yVznT3vYNehvfTwUMwekoeB_1RoKOIQxCnhGeRJhnhJDbAMxaloco5EdQoJgTNDEQYYhP7bw06xanIIWOhyTGkGocddL3zLm390Ri3kovCaVOWqjJ14yQXlFPKY-7Jqz_kvG78waWTBOOYhSIOf_m0rZ2zJpdLWyyU3UjAchuS3IYkGXjycu9r0oXJDtxPJB642QHrojSb_zxyNhn3v3XBji7cynweaGXfpd-NUTkbJ3LyOh0myTOXd-EXo3l8MA</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Lasda, Erika L.</creator><creator>Blumenthal, Thomas</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>201105</creationdate><title>Trans-splicing</title><author>Lasda, Erika L. ; Blumenthal, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4481-6b28d4c2d2826e18d74b3af8295ea7995de14016e6b3ac1cb0b9f1d73ef01bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>5' Untranslated Regions</topic><topic>Alternative splicing</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Evolution, Molecular</topic><topic>Exons</topic><topic>Mammalian cells</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Operon</topic><topic>Phylogeny</topic><topic>RNA Precursors - genetics</topic><topic>RNA Precursors - metabolism</topic><topic>RNA processing</topic><topic>RNA Stability</topic><topic>RNA, Spliced Leader - chemistry</topic><topic>RNA, Spliced Leader - genetics</topic><topic>RNA, Spliced Leader - metabolism</topic><topic>Spliceosomes - metabolism</topic><topic>Trans-Splicing - genetics</topic><topic>Trans-Splicing - physiology</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasda, Erika L.</creatorcontrib><creatorcontrib>Blumenthal, Thomas</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Wiley interdisciplinary reviews. RNA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasda, Erika L.</au><au>Blumenthal, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trans-splicing</atitle><jtitle>Wiley interdisciplinary reviews. RNA</jtitle><addtitle>WIREs RNA</addtitle><date>2011-05</date><risdate>2011</risdate><volume>2</volume><issue>3</issue><spage>417</spage><epage>434</epage><pages>417-434</pages><issn>1757-7004</issn><eissn>1757-7012</eissn><abstract>Trans‐splicing is the joining together of portions of two separate pre‐mRNA molecules. The two distinct categories of spliceosomal trans‐splicing are genic trans‐splicing, which joins exons of different pre‐mRNA transcripts, and spliced leader (SL) trans‐splicing, which involves an exon donated from a specialized SL RNA. Both depend primarily on the same signals and components as cis‐splicing. Genic trans‐splicing events producing protein‐coding mRNAs have been described in a variety of organisms, including Caenorhabditis elegans and Drosophila. In mammalian cells, genic trans‐splicing can be associated with cancers and translocations. SL trans‐splicing has mainly been studied in nematodes and trypanosomes, but there are now numerous and diverse phyla (including primitive chordates) where this type of trans‐splicing has been detected. Such diversity raises questions as to the evolutionary origin of the process. Another intriguing question concerns the function of trans‐splicing, as operon resolution can only account for a small proportion of the total amount of SL trans‐splicing. WIREs RNA 2011 2 417–434 DOI: 10.1002/wrna.71
This article is categorized under:
RNA Processing > Splicing Mechanisms
RNA Processing > Splicing Regulation/Alternative Splicing</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>21957027</pmid><doi>10.1002/wrna.71</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-7004 |
ispartof | Wiley interdisciplinary reviews. RNA, 2011-05, Vol.2 (3), p.417-434 |
issn | 1757-7004 1757-7012 |
language | eng |
recordid | cdi_proquest_miscellaneous_895855868 |
source | MEDLINE; Wiley Online Library Journals |
subjects | 5' Untranslated Regions Alternative splicing Animals Base Sequence Evolution, Molecular Exons Mammalian cells Models, Biological Molecular Sequence Data Nucleic Acid Conformation Operon Phylogeny RNA Precursors - genetics RNA Precursors - metabolism RNA processing RNA Stability RNA, Spliced Leader - chemistry RNA, Spliced Leader - genetics RNA, Spliced Leader - metabolism Spliceosomes - metabolism Trans-Splicing - genetics Trans-Splicing - physiology Translocation |
title | Trans-splicing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trans-splicing&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20RNA&rft.au=Lasda,%20Erika%20L.&rft.date=2011-05&rft.volume=2&rft.issue=3&rft.spage=417&rft.epage=434&rft.pages=417-434&rft.issn=1757-7004&rft.eissn=1757-7012&rft_id=info:doi/10.1002/wrna.71&rft_dat=%3Cproquest_cross%3E2006739630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006739630&rft_id=info:pmid/21957027&rfr_iscdi=true |