Homeostasis of plasma membrane viscosity in fluctuating temperatures

Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2011-10, Vol.192 (2), p.328-337
Hauptverfasser: Martinière, Alexandre, Shvedunova, Maria, Thomson, Adrian J. W., Evans, Nicola H., Penfield, Steven, Runions, John, McWatters, Harriet G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 2
container_start_page 328
container_title The New phytologist
container_volume 192
creator Martinière, Alexandre
Shvedunova, Maria
Thomson, Adrian J. W.
Evans, Nicola H.
Penfield, Steven
Runions, John
McWatters, Harriet G.
description Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses.
doi_str_mv 10.1111/j.1469-8137.2011.03821.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_894818207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41320488</jstor_id><sourcerecordid>41320488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4561-c9e99b175d5986f807947da29f56ee7a6cf696a615c31b6be332440c09db3ece3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EoqXwE0DZmBL8FcceGFD5KFIFDCCxWY5zQYmSptgJtP-ehJTOeDlL9z53pwehgOCI9O-qjAgXKpSEJRHFhESYSUqizQGa7huHaIoxlaHg4n2CTrwvMcYqFvQYTShJBCVCTNHtoqmh8a3xhQ-aPFhXxtcmqKFOnVlB8FV42_ii3QbFKsirzradaYvVR9BCvQZn2s6BP0VHuak8nO3qDL3d373OF-Hy-eFxfrMMLY8FCa0CpVKSxFmspMglThRPMkNVHguAxAibCyWMILFlJBUpMEY5xxarLGVggc3Q5Th37ZrPDnyr6_48qKr-0qbzWiouiaQ46ZNyTFrXeO8g12tX1MZtNcF6UKhLPZjSgyk9KNS_CvWmRy92S7q0hmwP_jnrA9dj4LuoYPvvwfrpZTH8ev585EvfNm7Pc8Io5lKyH97kidU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>894818207</pqid></control><display><type>article</type><title>Homeostasis of plasma membrane viscosity in fluctuating temperatures</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Martinière, Alexandre ; Shvedunova, Maria ; Thomson, Adrian J. W. ; Evans, Nicola H. ; Penfield, Steven ; Runions, John ; McWatters, Harriet G.</creator><creatorcontrib>Martinière, Alexandre ; Shvedunova, Maria ; Thomson, Adrian J. W. ; Evans, Nicola H. ; Penfield, Steven ; Runions, John ; McWatters, Harriet G.</creatorcontrib><description>Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2011.03821.x</identifier><identifier>PMID: 21762166</identifier><language>eng</language><publisher>Oxford, UK: John Wiley &amp; Sons</publisher><subject>Arabidopsis ; Arabidopsis - chemistry ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Cell Membrane - chemistry ; Cell Membrane - genetics ; Cell Membrane - metabolism ; Cell Membrane - physiology ; Cell membranes ; Chemical desaturation ; Circadian Rhythm ; desaturation ; diffusion ; fatty acid ; Fatty acids ; Fatty Acids - metabolism ; Fluorescence ; Genetic Variation ; Homeostasis ; Lipids ; Low temperature ; Membrane fluidity ; Plants ; Plants, Genetically Modified ; plasma membrane ; Seedlings ; Temperature ; temperature sensing ; Viscosity</subject><ispartof>The New phytologist, 2011-10, Vol.192 (2), p.328-337</ispartof><rights>Copyright © 2011 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4561-c9e99b175d5986f807947da29f56ee7a6cf696a615c31b6be332440c09db3ece3</citedby><cites>FETCH-LOGICAL-c4561-c9e99b175d5986f807947da29f56ee7a6cf696a615c31b6be332440c09db3ece3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41320488$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41320488$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,1432,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21762166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinière, Alexandre</creatorcontrib><creatorcontrib>Shvedunova, Maria</creatorcontrib><creatorcontrib>Thomson, Adrian J. W.</creatorcontrib><creatorcontrib>Evans, Nicola H.</creatorcontrib><creatorcontrib>Penfield, Steven</creatorcontrib><creatorcontrib>Runions, John</creatorcontrib><creatorcontrib>McWatters, Harriet G.</creatorcontrib><title>Homeostasis of plasma membrane viscosity in fluctuating temperatures</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses.</description><subject>Arabidopsis</subject><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - physiology</subject><subject>Cell membranes</subject><subject>Chemical desaturation</subject><subject>Circadian Rhythm</subject><subject>desaturation</subject><subject>diffusion</subject><subject>fatty acid</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fluorescence</subject><subject>Genetic Variation</subject><subject>Homeostasis</subject><subject>Lipids</subject><subject>Low temperature</subject><subject>Membrane fluidity</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>plasma membrane</subject><subject>Seedlings</subject><subject>Temperature</subject><subject>temperature sensing</subject><subject>Viscosity</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkD1PwzAQhi0EoqXwE0DZmBL8FcceGFD5KFIFDCCxWY5zQYmSptgJtP-ehJTOeDlL9z53pwehgOCI9O-qjAgXKpSEJRHFhESYSUqizQGa7huHaIoxlaHg4n2CTrwvMcYqFvQYTShJBCVCTNHtoqmh8a3xhQ-aPFhXxtcmqKFOnVlB8FV42_ii3QbFKsirzradaYvVR9BCvQZn2s6BP0VHuak8nO3qDL3d373OF-Hy-eFxfrMMLY8FCa0CpVKSxFmspMglThRPMkNVHguAxAibCyWMILFlJBUpMEY5xxarLGVggc3Q5Th37ZrPDnyr6_48qKr-0qbzWiouiaQ46ZNyTFrXeO8g12tX1MZtNcF6UKhLPZjSgyk9KNS_CvWmRy92S7q0hmwP_jnrA9dj4LuoYPvvwfrpZTH8ev585EvfNm7Pc8Io5lKyH97kidU</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Martinière, Alexandre</creator><creator>Shvedunova, Maria</creator><creator>Thomson, Adrian J. W.</creator><creator>Evans, Nicola H.</creator><creator>Penfield, Steven</creator><creator>Runions, John</creator><creator>McWatters, Harriet G.</creator><general>John Wiley &amp; Sons</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201110</creationdate><title>Homeostasis of plasma membrane viscosity in fluctuating temperatures</title><author>Martinière, Alexandre ; Shvedunova, Maria ; Thomson, Adrian J. W. ; Evans, Nicola H. ; Penfield, Steven ; Runions, John ; McWatters, Harriet G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4561-c9e99b175d5986f807947da29f56ee7a6cf696a615c31b6be332440c09db3ece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - physiology</topic><topic>Cell membranes</topic><topic>Chemical desaturation</topic><topic>Circadian Rhythm</topic><topic>desaturation</topic><topic>diffusion</topic><topic>fatty acid</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fluorescence</topic><topic>Genetic Variation</topic><topic>Homeostasis</topic><topic>Lipids</topic><topic>Low temperature</topic><topic>Membrane fluidity</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>plasma membrane</topic><topic>Seedlings</topic><topic>Temperature</topic><topic>temperature sensing</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinière, Alexandre</creatorcontrib><creatorcontrib>Shvedunova, Maria</creatorcontrib><creatorcontrib>Thomson, Adrian J. W.</creatorcontrib><creatorcontrib>Evans, Nicola H.</creatorcontrib><creatorcontrib>Penfield, Steven</creatorcontrib><creatorcontrib>Runions, John</creatorcontrib><creatorcontrib>McWatters, Harriet G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinière, Alexandre</au><au>Shvedunova, Maria</au><au>Thomson, Adrian J. W.</au><au>Evans, Nicola H.</au><au>Penfield, Steven</au><au>Runions, John</au><au>McWatters, Harriet G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homeostasis of plasma membrane viscosity in fluctuating temperatures</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2011-10</date><risdate>2011</risdate><volume>192</volume><issue>2</issue><spage>328</spage><epage>337</epage><pages>328-337</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses.</abstract><cop>Oxford, UK</cop><pub>John Wiley &amp; Sons</pub><pmid>21762166</pmid><doi>10.1111/j.1469-8137.2011.03821.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2011-10, Vol.192 (2), p.328-337
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_894818207
source MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Arabidopsis
Arabidopsis - chemistry
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - physiology
Cell Membrane - chemistry
Cell Membrane - genetics
Cell Membrane - metabolism
Cell Membrane - physiology
Cell membranes
Chemical desaturation
Circadian Rhythm
desaturation
diffusion
fatty acid
Fatty acids
Fatty Acids - metabolism
Fluorescence
Genetic Variation
Homeostasis
Lipids
Low temperature
Membrane fluidity
Plants
Plants, Genetically Modified
plasma membrane
Seedlings
Temperature
temperature sensing
Viscosity
title Homeostasis of plasma membrane viscosity in fluctuating temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homeostasis%20of%20plasma%20membrane%20viscosity%20in%20fluctuating%20temperatures&rft.jtitle=The%20New%20phytologist&rft.au=Martini%C3%A8re,%20Alexandre&rft.date=2011-10&rft.volume=192&rft.issue=2&rft.spage=328&rft.epage=337&rft.pages=328-337&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2011.03821.x&rft_dat=%3Cjstor_proqu%3E41320488%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=894818207&rft_id=info:pmid/21762166&rft_jstor_id=41320488&rfr_iscdi=true