Homeostasis of plasma membrane viscosity in fluctuating temperatures
Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investig...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2011-10, Vol.192 (2), p.328-337 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 337 |
---|---|
container_issue | 2 |
container_start_page | 328 |
container_title | The New phytologist |
container_volume | 192 |
creator | Martinière, Alexandre Shvedunova, Maria Thomson, Adrian J. W. Evans, Nicola H. Penfield, Steven Runions, John McWatters, Harriet G. |
description | Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses. |
doi_str_mv | 10.1111/j.1469-8137.2011.03821.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_894818207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41320488</jstor_id><sourcerecordid>41320488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4561-c9e99b175d5986f807947da29f56ee7a6cf696a615c31b6be332440c09db3ece3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EoqXwE0DZmBL8FcceGFD5KFIFDCCxWY5zQYmSptgJtP-ehJTOeDlL9z53pwehgOCI9O-qjAgXKpSEJRHFhESYSUqizQGa7huHaIoxlaHg4n2CTrwvMcYqFvQYTShJBCVCTNHtoqmh8a3xhQ-aPFhXxtcmqKFOnVlB8FV42_ii3QbFKsirzradaYvVR9BCvQZn2s6BP0VHuak8nO3qDL3d373OF-Hy-eFxfrMMLY8FCa0CpVKSxFmspMglThRPMkNVHguAxAibCyWMILFlJBUpMEY5xxarLGVggc3Q5Th37ZrPDnyr6_48qKr-0qbzWiouiaQ46ZNyTFrXeO8g12tX1MZtNcF6UKhLPZjSgyk9KNS_CvWmRy92S7q0hmwP_jnrA9dj4LuoYPvvwfrpZTH8ev585EvfNm7Pc8Io5lKyH97kidU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>894818207</pqid></control><display><type>article</type><title>Homeostasis of plasma membrane viscosity in fluctuating temperatures</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Martinière, Alexandre ; Shvedunova, Maria ; Thomson, Adrian J. W. ; Evans, Nicola H. ; Penfield, Steven ; Runions, John ; McWatters, Harriet G.</creator><creatorcontrib>Martinière, Alexandre ; Shvedunova, Maria ; Thomson, Adrian J. W. ; Evans, Nicola H. ; Penfield, Steven ; Runions, John ; McWatters, Harriet G.</creatorcontrib><description>Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2011.03821.x</identifier><identifier>PMID: 21762166</identifier><language>eng</language><publisher>Oxford, UK: John Wiley & Sons</publisher><subject>Arabidopsis ; Arabidopsis - chemistry ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Cell Membrane - chemistry ; Cell Membrane - genetics ; Cell Membrane - metabolism ; Cell Membrane - physiology ; Cell membranes ; Chemical desaturation ; Circadian Rhythm ; desaturation ; diffusion ; fatty acid ; Fatty acids ; Fatty Acids - metabolism ; Fluorescence ; Genetic Variation ; Homeostasis ; Lipids ; Low temperature ; Membrane fluidity ; Plants ; Plants, Genetically Modified ; plasma membrane ; Seedlings ; Temperature ; temperature sensing ; Viscosity</subject><ispartof>The New phytologist, 2011-10, Vol.192 (2), p.328-337</ispartof><rights>Copyright © 2011 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4561-c9e99b175d5986f807947da29f56ee7a6cf696a615c31b6be332440c09db3ece3</citedby><cites>FETCH-LOGICAL-c4561-c9e99b175d5986f807947da29f56ee7a6cf696a615c31b6be332440c09db3ece3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41320488$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41320488$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,1432,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21762166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinière, Alexandre</creatorcontrib><creatorcontrib>Shvedunova, Maria</creatorcontrib><creatorcontrib>Thomson, Adrian J. W.</creatorcontrib><creatorcontrib>Evans, Nicola H.</creatorcontrib><creatorcontrib>Penfield, Steven</creatorcontrib><creatorcontrib>Runions, John</creatorcontrib><creatorcontrib>McWatters, Harriet G.</creatorcontrib><title>Homeostasis of plasma membrane viscosity in fluctuating temperatures</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses.</description><subject>Arabidopsis</subject><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - physiology</subject><subject>Cell membranes</subject><subject>Chemical desaturation</subject><subject>Circadian Rhythm</subject><subject>desaturation</subject><subject>diffusion</subject><subject>fatty acid</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fluorescence</subject><subject>Genetic Variation</subject><subject>Homeostasis</subject><subject>Lipids</subject><subject>Low temperature</subject><subject>Membrane fluidity</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>plasma membrane</subject><subject>Seedlings</subject><subject>Temperature</subject><subject>temperature sensing</subject><subject>Viscosity</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkD1PwzAQhi0EoqXwE0DZmBL8FcceGFD5KFIFDCCxWY5zQYmSptgJtP-ehJTOeDlL9z53pwehgOCI9O-qjAgXKpSEJRHFhESYSUqizQGa7huHaIoxlaHg4n2CTrwvMcYqFvQYTShJBCVCTNHtoqmh8a3xhQ-aPFhXxtcmqKFOnVlB8FV42_ii3QbFKsirzradaYvVR9BCvQZn2s6BP0VHuak8nO3qDL3d373OF-Hy-eFxfrMMLY8FCa0CpVKSxFmspMglThRPMkNVHguAxAibCyWMILFlJBUpMEY5xxarLGVggc3Q5Th37ZrPDnyr6_48qKr-0qbzWiouiaQ46ZNyTFrXeO8g12tX1MZtNcF6UKhLPZjSgyk9KNS_CvWmRy92S7q0hmwP_jnrA9dj4LuoYPvvwfrpZTH8ev585EvfNm7Pc8Io5lKyH97kidU</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Martinière, Alexandre</creator><creator>Shvedunova, Maria</creator><creator>Thomson, Adrian J. W.</creator><creator>Evans, Nicola H.</creator><creator>Penfield, Steven</creator><creator>Runions, John</creator><creator>McWatters, Harriet G.</creator><general>John Wiley & Sons</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201110</creationdate><title>Homeostasis of plasma membrane viscosity in fluctuating temperatures</title><author>Martinière, Alexandre ; Shvedunova, Maria ; Thomson, Adrian J. W. ; Evans, Nicola H. ; Penfield, Steven ; Runions, John ; McWatters, Harriet G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4561-c9e99b175d5986f807947da29f56ee7a6cf696a615c31b6be332440c09db3ece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - physiology</topic><topic>Cell membranes</topic><topic>Chemical desaturation</topic><topic>Circadian Rhythm</topic><topic>desaturation</topic><topic>diffusion</topic><topic>fatty acid</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fluorescence</topic><topic>Genetic Variation</topic><topic>Homeostasis</topic><topic>Lipids</topic><topic>Low temperature</topic><topic>Membrane fluidity</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>plasma membrane</topic><topic>Seedlings</topic><topic>Temperature</topic><topic>temperature sensing</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinière, Alexandre</creatorcontrib><creatorcontrib>Shvedunova, Maria</creatorcontrib><creatorcontrib>Thomson, Adrian J. W.</creatorcontrib><creatorcontrib>Evans, Nicola H.</creatorcontrib><creatorcontrib>Penfield, Steven</creatorcontrib><creatorcontrib>Runions, John</creatorcontrib><creatorcontrib>McWatters, Harriet G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinière, Alexandre</au><au>Shvedunova, Maria</au><au>Thomson, Adrian J. W.</au><au>Evans, Nicola H.</au><au>Penfield, Steven</au><au>Runions, John</au><au>McWatters, Harriet G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homeostasis of plasma membrane viscosity in fluctuating temperatures</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2011-10</date><risdate>2011</risdate><volume>192</volume><issue>2</issue><spage>328</spage><epage>337</epage><pages>328-337</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses.</abstract><cop>Oxford, UK</cop><pub>John Wiley & Sons</pub><pmid>21762166</pmid><doi>10.1111/j.1469-8137.2011.03821.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2011-10, Vol.192 (2), p.328-337 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_894818207 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Arabidopsis Arabidopsis - chemistry Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - physiology Cell Membrane - chemistry Cell Membrane - genetics Cell Membrane - metabolism Cell Membrane - physiology Cell membranes Chemical desaturation Circadian Rhythm desaturation diffusion fatty acid Fatty acids Fatty Acids - metabolism Fluorescence Genetic Variation Homeostasis Lipids Low temperature Membrane fluidity Plants Plants, Genetically Modified plasma membrane Seedlings Temperature temperature sensing Viscosity |
title | Homeostasis of plasma membrane viscosity in fluctuating temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homeostasis%20of%20plasma%20membrane%20viscosity%20in%20fluctuating%20temperatures&rft.jtitle=The%20New%20phytologist&rft.au=Martini%C3%A8re,%20Alexandre&rft.date=2011-10&rft.volume=192&rft.issue=2&rft.spage=328&rft.epage=337&rft.pages=328-337&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2011.03821.x&rft_dat=%3Cjstor_proqu%3E41320488%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=894818207&rft_id=info:pmid/21762166&rft_jstor_id=41320488&rfr_iscdi=true |