QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses

A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2011-11, Vol.32 (15), p.3241-3252
Hauptverfasser: Xu, Jie, Wang, Lei, Wang, Luoxin, Shen, Xiaolin, Xu, Weilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3252
container_issue 15
container_start_page 3241
container_title Journal of computational chemistry
container_volume 32
creator Xu, Jie
Wang, Lei
Wang, Luoxin
Shen, Xiaolin
Xu, Weilin
description A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple linear regression, artificial neural network (ANN), and support vector machine (SVM) were utilized to build the linear and nonlinear QSPR models, respectively. The obtained models with four descriptors involved show good predictive ability. The linear model fits the training set with R2 = 0.8680, while ANN and SVM higher values of R2 = 0.8898 and 0.9302, respectively. The validation results through the test set indicate that the proposed models are robust and satisfactory. The QSPR study suggests that the molecular lipophilicity is closely related to the Setschenow constants. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011
doi_str_mv 10.1002/jcc.21907
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_894817572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476255671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3897-3148905f5d5b8691cc9f2a5aa447669e816f3681a011ffe4e36018a7dccf37d33</originalsourceid><addsrcrecordid>eNp10F1P2zAUBmALbYLycbE_MFm7QUgE7NjxxyWrGNsohVLYuLOMY7N0adzlJGL993MpcDEJydKRjp7zynoR-kDJESUkP545d5RTTeQGGlCiRaaVvHuHBoTqPFOioFtoG2BGCGGF4JtoK6eKScH4AN1NplfXGLq-XOIY8NR34H75Jj5iFxvobNPBah_bB9tULi3ni9g3JeAequYBX4yuD_HJeHyIbVPi6Y-LNG29BA-76H2wNfi957mDbr-c3gy_ZqPLs2_Dk1HmmNIyY5QrTYpQlMW9Epo6p0NuC2s5l0Jor6gITChqCaUheO6ZIFRZWToXmCwZ20H769xFG__0Hjozr8D5uraNjz0YpbmispB5kp_-k7PYt-m7KyTy9DhP6GCNXBsBWh_Moq3mtl0aSsyqbJPKNk9lJ_vxObC_n_vyVb60m8DxGjxWtV--nWS-D4cvkdn6ooLO_329sO1vIySThfk5PjPnkyv1eTJSZsL-Af5vlXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896296244</pqid></control><display><type>article</type><title>QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Jie ; Wang, Lei ; Wang, Luoxin ; Shen, Xiaolin ; Xu, Weilin</creator><creatorcontrib>Xu, Jie ; Wang, Lei ; Wang, Luoxin ; Shen, Xiaolin ; Xu, Weilin</creatorcontrib><description>A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple linear regression, artificial neural network (ANN), and support vector machine (SVM) were utilized to build the linear and nonlinear QSPR models, respectively. The obtained models with four descriptors involved show good predictive ability. The linear model fits the training set with R2 = 0.8680, while ANN and SVM higher values of R2 = 0.8898 and 0.9302, respectively. The validation results through the test set indicate that the proposed models are robust and satisfactory. The QSPR study suggests that the molecular lipophilicity is closely related to the Setschenow constants. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.21907</identifier><identifier>PMID: 21837634</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analytical chemistry ; artificial neural network ; Chemical compounds ; Methods ; Molecular chemistry ; Molecular structure ; multiple linear regression ; Neural networks ; Neural Networks (Computer) ; Organic Chemicals - chemistry ; QSPR ; Quantitative Structure-Activity Relationship ; Setschenow constant ; Support Vector Machine</subject><ispartof>Journal of computational chemistry, 2011-11, Vol.32 (15), p.3241-3252</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Nov 30, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3897-3148905f5d5b8691cc9f2a5aa447669e816f3681a011ffe4e36018a7dccf37d33</citedby><cites>FETCH-LOGICAL-c3897-3148905f5d5b8691cc9f2a5aa447669e816f3681a011ffe4e36018a7dccf37d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.21907$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.21907$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21837634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Luoxin</creatorcontrib><creatorcontrib>Shen, Xiaolin</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><title>QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple linear regression, artificial neural network (ANN), and support vector machine (SVM) were utilized to build the linear and nonlinear QSPR models, respectively. The obtained models with four descriptors involved show good predictive ability. The linear model fits the training set with R2 = 0.8680, while ANN and SVM higher values of R2 = 0.8898 and 0.9302, respectively. The validation results through the test set indicate that the proposed models are robust and satisfactory. The QSPR study suggests that the molecular lipophilicity is closely related to the Setschenow constants. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011</description><subject>Analytical chemistry</subject><subject>artificial neural network</subject><subject>Chemical compounds</subject><subject>Methods</subject><subject>Molecular chemistry</subject><subject>Molecular structure</subject><subject>multiple linear regression</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Organic Chemicals - chemistry</subject><subject>QSPR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Setschenow constant</subject><subject>Support Vector Machine</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10F1P2zAUBmALbYLycbE_MFm7QUgE7NjxxyWrGNsohVLYuLOMY7N0adzlJGL993MpcDEJydKRjp7zynoR-kDJESUkP545d5RTTeQGGlCiRaaVvHuHBoTqPFOioFtoG2BGCGGF4JtoK6eKScH4AN1NplfXGLq-XOIY8NR34H75Jj5iFxvobNPBah_bB9tULi3ni9g3JeAequYBX4yuD_HJeHyIbVPi6Y-LNG29BA-76H2wNfi957mDbr-c3gy_ZqPLs2_Dk1HmmNIyY5QrTYpQlMW9Epo6p0NuC2s5l0Jor6gITChqCaUheO6ZIFRZWToXmCwZ20H769xFG__0Hjozr8D5uraNjz0YpbmispB5kp_-k7PYt-m7KyTy9DhP6GCNXBsBWh_Moq3mtl0aSsyqbJPKNk9lJ_vxObC_n_vyVb60m8DxGjxWtV--nWS-D4cvkdn6ooLO_329sO1vIySThfk5PjPnkyv1eTJSZsL-Af5vlXg</recordid><startdate>20111130</startdate><enddate>20111130</enddate><creator>Xu, Jie</creator><creator>Wang, Lei</creator><creator>Wang, Luoxin</creator><creator>Shen, Xiaolin</creator><creator>Xu, Weilin</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>20111130</creationdate><title>QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses</title><author>Xu, Jie ; Wang, Lei ; Wang, Luoxin ; Shen, Xiaolin ; Xu, Weilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3897-3148905f5d5b8691cc9f2a5aa447669e816f3681a011ffe4e36018a7dccf37d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>artificial neural network</topic><topic>Chemical compounds</topic><topic>Methods</topic><topic>Molecular chemistry</topic><topic>Molecular structure</topic><topic>multiple linear regression</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Organic Chemicals - chemistry</topic><topic>QSPR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Setschenow constant</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Luoxin</creatorcontrib><creatorcontrib>Shen, Xiaolin</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jie</au><au>Wang, Lei</au><au>Wang, Luoxin</au><au>Shen, Xiaolin</au><au>Xu, Weilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2011-11-30</date><risdate>2011</risdate><volume>32</volume><issue>15</issue><spage>3241</spage><epage>3252</epage><pages>3241-3252</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple linear regression, artificial neural network (ANN), and support vector machine (SVM) were utilized to build the linear and nonlinear QSPR models, respectively. The obtained models with four descriptors involved show good predictive ability. The linear model fits the training set with R2 = 0.8680, while ANN and SVM higher values of R2 = 0.8898 and 0.9302, respectively. The validation results through the test set indicate that the proposed models are robust and satisfactory. The QSPR study suggests that the molecular lipophilicity is closely related to the Setschenow constants. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21837634</pmid><doi>10.1002/jcc.21907</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2011-11, Vol.32 (15), p.3241-3252
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_894817572
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Analytical chemistry
artificial neural network
Chemical compounds
Methods
Molecular chemistry
Molecular structure
multiple linear regression
Neural networks
Neural Networks (Computer)
Organic Chemicals - chemistry
QSPR
Quantitative Structure-Activity Relationship
Setschenow constant
Support Vector Machine
title QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T08%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QSPR%20study%20of%20Setschenow%20constants%20of%20organic%20compounds%20using%20MLR,%20ANN,%20and%20SVM%20analyses&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Xu,%20Jie&rft.date=2011-11-30&rft.volume=32&rft.issue=15&rft.spage=3241&rft.epage=3252&rft.pages=3241-3252&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.21907&rft_dat=%3Cproquest_cross%3E2476255671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896296244&rft_id=info:pmid/21837634&rfr_iscdi=true