QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses
A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2011-11, Vol.32 (15), p.3241-3252 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3252 |
---|---|
container_issue | 15 |
container_start_page | 3241 |
container_title | Journal of computational chemistry |
container_volume | 32 |
creator | Xu, Jie Wang, Lei Wang, Luoxin Shen, Xiaolin Xu, Weilin |
description | A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple linear regression, artificial neural network (ANN), and support vector machine (SVM) were utilized to build the linear and nonlinear QSPR models, respectively. The obtained models with four descriptors involved show good predictive ability. The linear model fits the training set with R2 = 0.8680, while ANN and SVM higher values of R2 = 0.8898 and 0.9302, respectively. The validation results through the test set indicate that the proposed models are robust and satisfactory. The QSPR study suggests that the molecular lipophilicity is closely related to the Setschenow constants. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 |
doi_str_mv | 10.1002/jcc.21907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_894817572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476255671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3897-3148905f5d5b8691cc9f2a5aa447669e816f3681a011ffe4e36018a7dccf37d33</originalsourceid><addsrcrecordid>eNp10F1P2zAUBmALbYLycbE_MFm7QUgE7NjxxyWrGNsohVLYuLOMY7N0adzlJGL993MpcDEJydKRjp7zynoR-kDJESUkP545d5RTTeQGGlCiRaaVvHuHBoTqPFOioFtoG2BGCGGF4JtoK6eKScH4AN1NplfXGLq-XOIY8NR34H75Jj5iFxvobNPBah_bB9tULi3ni9g3JeAequYBX4yuD_HJeHyIbVPi6Y-LNG29BA-76H2wNfi957mDbr-c3gy_ZqPLs2_Dk1HmmNIyY5QrTYpQlMW9Epo6p0NuC2s5l0Jor6gITChqCaUheO6ZIFRZWToXmCwZ20H769xFG__0Hjozr8D5uraNjz0YpbmispB5kp_-k7PYt-m7KyTy9DhP6GCNXBsBWh_Moq3mtl0aSsyqbJPKNk9lJ_vxObC_n_vyVb60m8DxGjxWtV--nWS-D4cvkdn6ooLO_329sO1vIySThfk5PjPnkyv1eTJSZsL-Af5vlXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896296244</pqid></control><display><type>article</type><title>QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Jie ; Wang, Lei ; Wang, Luoxin ; Shen, Xiaolin ; Xu, Weilin</creator><creatorcontrib>Xu, Jie ; Wang, Lei ; Wang, Luoxin ; Shen, Xiaolin ; Xu, Weilin</creatorcontrib><description>A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple linear regression, artificial neural network (ANN), and support vector machine (SVM) were utilized to build the linear and nonlinear QSPR models, respectively. The obtained models with four descriptors involved show good predictive ability. The linear model fits the training set with R2 = 0.8680, while ANN and SVM higher values of R2 = 0.8898 and 0.9302, respectively. The validation results through the test set indicate that the proposed models are robust and satisfactory. The QSPR study suggests that the molecular lipophilicity is closely related to the Setschenow constants. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.21907</identifier><identifier>PMID: 21837634</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analytical chemistry ; artificial neural network ; Chemical compounds ; Methods ; Molecular chemistry ; Molecular structure ; multiple linear regression ; Neural networks ; Neural Networks (Computer) ; Organic Chemicals - chemistry ; QSPR ; Quantitative Structure-Activity Relationship ; Setschenow constant ; Support Vector Machine</subject><ispartof>Journal of computational chemistry, 2011-11, Vol.32 (15), p.3241-3252</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Nov 30, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3897-3148905f5d5b8691cc9f2a5aa447669e816f3681a011ffe4e36018a7dccf37d33</citedby><cites>FETCH-LOGICAL-c3897-3148905f5d5b8691cc9f2a5aa447669e816f3681a011ffe4e36018a7dccf37d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.21907$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.21907$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21837634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Luoxin</creatorcontrib><creatorcontrib>Shen, Xiaolin</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><title>QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple linear regression, artificial neural network (ANN), and support vector machine (SVM) were utilized to build the linear and nonlinear QSPR models, respectively. The obtained models with four descriptors involved show good predictive ability. The linear model fits the training set with R2 = 0.8680, while ANN and SVM higher values of R2 = 0.8898 and 0.9302, respectively. The validation results through the test set indicate that the proposed models are robust and satisfactory. The QSPR study suggests that the molecular lipophilicity is closely related to the Setschenow constants. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011</description><subject>Analytical chemistry</subject><subject>artificial neural network</subject><subject>Chemical compounds</subject><subject>Methods</subject><subject>Molecular chemistry</subject><subject>Molecular structure</subject><subject>multiple linear regression</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Organic Chemicals - chemistry</subject><subject>QSPR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Setschenow constant</subject><subject>Support Vector Machine</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10F1P2zAUBmALbYLycbE_MFm7QUgE7NjxxyWrGNsohVLYuLOMY7N0adzlJGL993MpcDEJydKRjp7zynoR-kDJESUkP545d5RTTeQGGlCiRaaVvHuHBoTqPFOioFtoG2BGCGGF4JtoK6eKScH4AN1NplfXGLq-XOIY8NR34H75Jj5iFxvobNPBah_bB9tULi3ni9g3JeAequYBX4yuD_HJeHyIbVPi6Y-LNG29BA-76H2wNfi957mDbr-c3gy_ZqPLs2_Dk1HmmNIyY5QrTYpQlMW9Epo6p0NuC2s5l0Jor6gITChqCaUheO6ZIFRZWToXmCwZ20H769xFG__0Hjozr8D5uraNjz0YpbmispB5kp_-k7PYt-m7KyTy9DhP6GCNXBsBWh_Moq3mtl0aSsyqbJPKNk9lJ_vxObC_n_vyVb60m8DxGjxWtV--nWS-D4cvkdn6ooLO_329sO1vIySThfk5PjPnkyv1eTJSZsL-Af5vlXg</recordid><startdate>20111130</startdate><enddate>20111130</enddate><creator>Xu, Jie</creator><creator>Wang, Lei</creator><creator>Wang, Luoxin</creator><creator>Shen, Xiaolin</creator><creator>Xu, Weilin</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>20111130</creationdate><title>QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses</title><author>Xu, Jie ; Wang, Lei ; Wang, Luoxin ; Shen, Xiaolin ; Xu, Weilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3897-3148905f5d5b8691cc9f2a5aa447669e816f3681a011ffe4e36018a7dccf37d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>artificial neural network</topic><topic>Chemical compounds</topic><topic>Methods</topic><topic>Molecular chemistry</topic><topic>Molecular structure</topic><topic>multiple linear regression</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Organic Chemicals - chemistry</topic><topic>QSPR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Setschenow constant</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Luoxin</creatorcontrib><creatorcontrib>Shen, Xiaolin</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jie</au><au>Wang, Lei</au><au>Wang, Luoxin</au><au>Shen, Xiaolin</au><au>Xu, Weilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2011-11-30</date><risdate>2011</risdate><volume>32</volume><issue>15</issue><spage>3241</spage><epage>3252</epage><pages>3241-3252</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>A quantitative structure‐property relationship (QSPR) study was performed for the prediction of the Setschenow constants (Ksalt) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple linear regression, artificial neural network (ANN), and support vector machine (SVM) were utilized to build the linear and nonlinear QSPR models, respectively. The obtained models with four descriptors involved show good predictive ability. The linear model fits the training set with R2 = 0.8680, while ANN and SVM higher values of R2 = 0.8898 and 0.9302, respectively. The validation results through the test set indicate that the proposed models are robust and satisfactory. The QSPR study suggests that the molecular lipophilicity is closely related to the Setschenow constants. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21837634</pmid><doi>10.1002/jcc.21907</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2011-11, Vol.32 (15), p.3241-3252 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_894817572 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Analytical chemistry artificial neural network Chemical compounds Methods Molecular chemistry Molecular structure multiple linear regression Neural networks Neural Networks (Computer) Organic Chemicals - chemistry QSPR Quantitative Structure-Activity Relationship Setschenow constant Support Vector Machine |
title | QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T08%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QSPR%20study%20of%20Setschenow%20constants%20of%20organic%20compounds%20using%20MLR,%20ANN,%20and%20SVM%20analyses&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Xu,%20Jie&rft.date=2011-11-30&rft.volume=32&rft.issue=15&rft.spage=3241&rft.epage=3252&rft.pages=3241-3252&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.21907&rft_dat=%3Cproquest_cross%3E2476255671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896296244&rft_id=info:pmid/21837634&rfr_iscdi=true |