Validation of the Zürich burn-biofilm model

Abstract Background Despite advances in the use of topical and parenteral antimicrobial therapy and the practice of early tangential burn-wound excision, bacterial infection remains a major problem in the management of burn victims today. The purpose of this study was to design and evaluate a polysp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Burns 2011-11, Vol.37 (7), p.1125-1133
Hauptverfasser: Guggenheim, Merlin, Thurnheer, Thomas, Gmür, Rudolf, Giovanoli, Pietro, Guggenheim, Bernhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1133
container_issue 7
container_start_page 1125
container_title Burns
container_volume 37
creator Guggenheim, Merlin
Thurnheer, Thomas
Gmür, Rudolf
Giovanoli, Pietro
Guggenheim, Bernhard
description Abstract Background Despite advances in the use of topical and parenteral antimicrobial therapy and the practice of early tangential burn-wound excision, bacterial infection remains a major problem in the management of burn victims today. The purpose of this study was to design and evaluate a polyspecies biofilm model with bacteria known to cause severe infections in burn patients. The model is simple to prepare, maintain and analyse, and allows for short-term exposure to antimicrobials. Results Initial experiments showed that it was impossible to establish balanced polyspecies biofilms with an inoculum of Gram-positive and -negative bacteria. After 64.5 h of incubation, the Gram-negative bacteria ( Escherichia coli and Pseudomonas aeruginosa ) had suppressed the Gram-positives ( Enterococcus faecalis, Staphylococcus aureus and Streptococcus intermedius) . However, adding the Gram-negative bacteria after 41.5 h to an established biofilm of Gram-positives resulted in a balanced microbial consortium. After 64.5 h, all species were present in high numbers (107 to 108 colony forming units (CFU) per biofilm). Multiple repetitions showed high reproducibility of biofilm formation without significant differences between and within experiments. Combined fluorescence in situ hybridisation/confocal laser scanning microscopy (FISH/CLSM) analyses, for which biofilms had to be grown on a different non-flexible substrate (hydroxy apatite), revealed that, by 41.5 h, the biofilm consisted of an almost confluent layer of bacteria firmly adherent to the substratum. After 64.5 h (22 h after the addition of the Gram negatives), the biofilm consisted of a confluent mixture of single cells, an abundance of galaxies of bacteria with small lacunae and large amounts of extracellular matrix polysaccharides. Conclusions The polyspecies biofilm model contains the most prevalent burn-associated Gram-positive and Gram-negative bacterial pathogens and mimics the Gram-negative shift observed in vivo . It shows excellent reproducibility. It should allow adaptation to the bacterial spectrum prevalent in different burn centres and lead to a much more reliable investigation of the efficiency of topical antimicrobial agents than models operating with planktonic bacteria. The experiments further open up the perspective to create an in vivo model using these biofilms as infectious agents.
doi_str_mv 10.1016/j.burns.2011.05.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_893983852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305417911001665</els_id><sourcerecordid>893983852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-57408ed74eba62bc5651686450f39a62fefc6ca8dd2e7a5a358fe0ae58b0dcac3</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoMo9rb6CwSZjbjpjCeTZCZZWJDiR6Hgwo-Fm5BJTmiuM5OazBX637rzjzXjvSp0YzaB8LxvDs8h5BmFhgLtXm2bYZfm3LRAaQOiAdo_IBsqe1VTDuoh2QADUXPaqyNynPMWyhESHpOjlvYtZ4xtyOlXMwZnlhDnKvpqucLq26_bFOxVtbbXQ4g-jFM1RYfjE_LImzHj08N9Qr68e_v5_EN9-fH9xfmby9pyzpZa9Bwkup7jYLp2sKITtJMdF-CZKi8eve2skc612BthmJAewaCQAzhrLDshL_e91yn-2GFe9BSyxXE0M8Zd1lIxJZkUbSHZnrQp5pzQ6-sUJpNuNAW9WtJb_duSXi1pELpYKqnnh_7dMKH7m_mjpQAvDoDJ1ow-mdmG_I_jQoFStHCv9xwWGz8DJp1twNmiCwntol0M_xnk7F7ejmEO5cvveIN5G0uiiNZU51aD_rQudN0npVAqO8HuAERRmz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893983852</pqid></control><display><type>article</type><title>Validation of the Zürich burn-biofilm model</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Guggenheim, Merlin ; Thurnheer, Thomas ; Gmür, Rudolf ; Giovanoli, Pietro ; Guggenheim, Bernhard</creator><creatorcontrib>Guggenheim, Merlin ; Thurnheer, Thomas ; Gmür, Rudolf ; Giovanoli, Pietro ; Guggenheim, Bernhard</creatorcontrib><description>Abstract Background Despite advances in the use of topical and parenteral antimicrobial therapy and the practice of early tangential burn-wound excision, bacterial infection remains a major problem in the management of burn victims today. The purpose of this study was to design and evaluate a polyspecies biofilm model with bacteria known to cause severe infections in burn patients. The model is simple to prepare, maintain and analyse, and allows for short-term exposure to antimicrobials. Results Initial experiments showed that it was impossible to establish balanced polyspecies biofilms with an inoculum of Gram-positive and -negative bacteria. After 64.5 h of incubation, the Gram-negative bacteria ( Escherichia coli and Pseudomonas aeruginosa ) had suppressed the Gram-positives ( Enterococcus faecalis, Staphylococcus aureus and Streptococcus intermedius) . However, adding the Gram-negative bacteria after 41.5 h to an established biofilm of Gram-positives resulted in a balanced microbial consortium. After 64.5 h, all species were present in high numbers (107 to 108 colony forming units (CFU) per biofilm). Multiple repetitions showed high reproducibility of biofilm formation without significant differences between and within experiments. Combined fluorescence in situ hybridisation/confocal laser scanning microscopy (FISH/CLSM) analyses, for which biofilms had to be grown on a different non-flexible substrate (hydroxy apatite), revealed that, by 41.5 h, the biofilm consisted of an almost confluent layer of bacteria firmly adherent to the substratum. After 64.5 h (22 h after the addition of the Gram negatives), the biofilm consisted of a confluent mixture of single cells, an abundance of galaxies of bacteria with small lacunae and large amounts of extracellular matrix polysaccharides. Conclusions The polyspecies biofilm model contains the most prevalent burn-associated Gram-positive and Gram-negative bacterial pathogens and mimics the Gram-negative shift observed in vivo . It shows excellent reproducibility. It should allow adaptation to the bacterial spectrum prevalent in different burn centres and lead to a much more reliable investigation of the efficiency of topical antimicrobial agents than models operating with planktonic bacteria. The experiments further open up the perspective to create an in vivo model using these biofilms as infectious agents.</description><identifier>ISSN: 0305-4179</identifier><identifier>EISSN: 1879-1409</identifier><identifier>DOI: 10.1016/j.burns.2011.05.017</identifier><identifier>PMID: 21724333</identifier><identifier>CODEN: BURND8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bacteria ; Biofilm ; Biofilms - growth &amp; development ; Biological and medical sciences ; Burn wound infection ; Burns ; Burns - microbiology ; Critical Care ; Gram-Negative Bacteria - growth &amp; development ; Gram-Positive Bacteria - growth &amp; development ; Humans ; Medical sciences ; Models, Biological ; Traumas. Diseases due to physical agents</subject><ispartof>Burns, 2011-11, Vol.37 (7), p.1125-1133</ispartof><rights>Elsevier Ltd and ISBI</rights><rights>2011 Elsevier Ltd and ISBI</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-57408ed74eba62bc5651686450f39a62fefc6ca8dd2e7a5a358fe0ae58b0dcac3</citedby><cites>FETCH-LOGICAL-c443t-57408ed74eba62bc5651686450f39a62fefc6ca8dd2e7a5a358fe0ae58b0dcac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.burns.2011.05.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24590991$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21724333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guggenheim, Merlin</creatorcontrib><creatorcontrib>Thurnheer, Thomas</creatorcontrib><creatorcontrib>Gmür, Rudolf</creatorcontrib><creatorcontrib>Giovanoli, Pietro</creatorcontrib><creatorcontrib>Guggenheim, Bernhard</creatorcontrib><title>Validation of the Zürich burn-biofilm model</title><title>Burns</title><addtitle>Burns</addtitle><description>Abstract Background Despite advances in the use of topical and parenteral antimicrobial therapy and the practice of early tangential burn-wound excision, bacterial infection remains a major problem in the management of burn victims today. The purpose of this study was to design and evaluate a polyspecies biofilm model with bacteria known to cause severe infections in burn patients. The model is simple to prepare, maintain and analyse, and allows for short-term exposure to antimicrobials. Results Initial experiments showed that it was impossible to establish balanced polyspecies biofilms with an inoculum of Gram-positive and -negative bacteria. After 64.5 h of incubation, the Gram-negative bacteria ( Escherichia coli and Pseudomonas aeruginosa ) had suppressed the Gram-positives ( Enterococcus faecalis, Staphylococcus aureus and Streptococcus intermedius) . However, adding the Gram-negative bacteria after 41.5 h to an established biofilm of Gram-positives resulted in a balanced microbial consortium. After 64.5 h, all species were present in high numbers (107 to 108 colony forming units (CFU) per biofilm). Multiple repetitions showed high reproducibility of biofilm formation without significant differences between and within experiments. Combined fluorescence in situ hybridisation/confocal laser scanning microscopy (FISH/CLSM) analyses, for which biofilms had to be grown on a different non-flexible substrate (hydroxy apatite), revealed that, by 41.5 h, the biofilm consisted of an almost confluent layer of bacteria firmly adherent to the substratum. After 64.5 h (22 h after the addition of the Gram negatives), the biofilm consisted of a confluent mixture of single cells, an abundance of galaxies of bacteria with small lacunae and large amounts of extracellular matrix polysaccharides. Conclusions The polyspecies biofilm model contains the most prevalent burn-associated Gram-positive and Gram-negative bacterial pathogens and mimics the Gram-negative shift observed in vivo . It shows excellent reproducibility. It should allow adaptation to the bacterial spectrum prevalent in different burn centres and lead to a much more reliable investigation of the efficiency of topical antimicrobial agents than models operating with planktonic bacteria. The experiments further open up the perspective to create an in vivo model using these biofilms as infectious agents.</description><subject>Bacteria</subject><subject>Biofilm</subject><subject>Biofilms - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Burn wound infection</subject><subject>Burns</subject><subject>Burns - microbiology</subject><subject>Critical Care</subject><subject>Gram-Negative Bacteria - growth &amp; development</subject><subject>Gram-Positive Bacteria - growth &amp; development</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Traumas. Diseases due to physical agents</subject><issn>0305-4179</issn><issn>1879-1409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rFTEUhoMo9rb6CwSZjbjpjCeTZCZZWJDiR6Hgwo-Fm5BJTmiuM5OazBX637rzjzXjvSp0YzaB8LxvDs8h5BmFhgLtXm2bYZfm3LRAaQOiAdo_IBsqe1VTDuoh2QADUXPaqyNynPMWyhESHpOjlvYtZ4xtyOlXMwZnlhDnKvpqucLq26_bFOxVtbbXQ4g-jFM1RYfjE_LImzHj08N9Qr68e_v5_EN9-fH9xfmby9pyzpZa9Bwkup7jYLp2sKITtJMdF-CZKi8eve2skc612BthmJAewaCQAzhrLDshL_e91yn-2GFe9BSyxXE0M8Zd1lIxJZkUbSHZnrQp5pzQ6-sUJpNuNAW9WtJb_duSXi1pELpYKqnnh_7dMKH7m_mjpQAvDoDJ1ow-mdmG_I_jQoFStHCv9xwWGz8DJp1twNmiCwntol0M_xnk7F7ejmEO5cvveIN5G0uiiNZU51aD_rQudN0npVAqO8HuAERRmz8</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Guggenheim, Merlin</creator><creator>Thurnheer, Thomas</creator><creator>Gmür, Rudolf</creator><creator>Giovanoli, Pietro</creator><creator>Guggenheim, Bernhard</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>Validation of the Zürich burn-biofilm model</title><author>Guggenheim, Merlin ; Thurnheer, Thomas ; Gmür, Rudolf ; Giovanoli, Pietro ; Guggenheim, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-57408ed74eba62bc5651686450f39a62fefc6ca8dd2e7a5a358fe0ae58b0dcac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Biofilm</topic><topic>Biofilms - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Burn wound infection</topic><topic>Burns</topic><topic>Burns - microbiology</topic><topic>Critical Care</topic><topic>Gram-Negative Bacteria - growth &amp; development</topic><topic>Gram-Positive Bacteria - growth &amp; development</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Traumas. Diseases due to physical agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guggenheim, Merlin</creatorcontrib><creatorcontrib>Thurnheer, Thomas</creatorcontrib><creatorcontrib>Gmür, Rudolf</creatorcontrib><creatorcontrib>Giovanoli, Pietro</creatorcontrib><creatorcontrib>Guggenheim, Bernhard</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Burns</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guggenheim, Merlin</au><au>Thurnheer, Thomas</au><au>Gmür, Rudolf</au><au>Giovanoli, Pietro</au><au>Guggenheim, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of the Zürich burn-biofilm model</atitle><jtitle>Burns</jtitle><addtitle>Burns</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>37</volume><issue>7</issue><spage>1125</spage><epage>1133</epage><pages>1125-1133</pages><issn>0305-4179</issn><eissn>1879-1409</eissn><coden>BURND8</coden><abstract>Abstract Background Despite advances in the use of topical and parenteral antimicrobial therapy and the practice of early tangential burn-wound excision, bacterial infection remains a major problem in the management of burn victims today. The purpose of this study was to design and evaluate a polyspecies biofilm model with bacteria known to cause severe infections in burn patients. The model is simple to prepare, maintain and analyse, and allows for short-term exposure to antimicrobials. Results Initial experiments showed that it was impossible to establish balanced polyspecies biofilms with an inoculum of Gram-positive and -negative bacteria. After 64.5 h of incubation, the Gram-negative bacteria ( Escherichia coli and Pseudomonas aeruginosa ) had suppressed the Gram-positives ( Enterococcus faecalis, Staphylococcus aureus and Streptococcus intermedius) . However, adding the Gram-negative bacteria after 41.5 h to an established biofilm of Gram-positives resulted in a balanced microbial consortium. After 64.5 h, all species were present in high numbers (107 to 108 colony forming units (CFU) per biofilm). Multiple repetitions showed high reproducibility of biofilm formation without significant differences between and within experiments. Combined fluorescence in situ hybridisation/confocal laser scanning microscopy (FISH/CLSM) analyses, for which biofilms had to be grown on a different non-flexible substrate (hydroxy apatite), revealed that, by 41.5 h, the biofilm consisted of an almost confluent layer of bacteria firmly adherent to the substratum. After 64.5 h (22 h after the addition of the Gram negatives), the biofilm consisted of a confluent mixture of single cells, an abundance of galaxies of bacteria with small lacunae and large amounts of extracellular matrix polysaccharides. Conclusions The polyspecies biofilm model contains the most prevalent burn-associated Gram-positive and Gram-negative bacterial pathogens and mimics the Gram-negative shift observed in vivo . It shows excellent reproducibility. It should allow adaptation to the bacterial spectrum prevalent in different burn centres and lead to a much more reliable investigation of the efficiency of topical antimicrobial agents than models operating with planktonic bacteria. The experiments further open up the perspective to create an in vivo model using these biofilms as infectious agents.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21724333</pmid><doi>10.1016/j.burns.2011.05.017</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-4179
ispartof Burns, 2011-11, Vol.37 (7), p.1125-1133
issn 0305-4179
1879-1409
language eng
recordid cdi_proquest_miscellaneous_893983852
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Bacteria
Biofilm
Biofilms - growth & development
Biological and medical sciences
Burn wound infection
Burns
Burns - microbiology
Critical Care
Gram-Negative Bacteria - growth & development
Gram-Positive Bacteria - growth & development
Humans
Medical sciences
Models, Biological
Traumas. Diseases due to physical agents
title Validation of the Zürich burn-biofilm model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20the%20Z%C3%BCrich%20burn-biofilm%20model&rft.jtitle=Burns&rft.au=Guggenheim,%20Merlin&rft.date=2011-11-01&rft.volume=37&rft.issue=7&rft.spage=1125&rft.epage=1133&rft.pages=1125-1133&rft.issn=0305-4179&rft.eissn=1879-1409&rft.coden=BURND8&rft_id=info:doi/10.1016/j.burns.2011.05.017&rft_dat=%3Cproquest_cross%3E893983852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893983852&rft_id=info:pmid/21724333&rft_els_id=S0305417911001665&rfr_iscdi=true