Temperature distribution in the upper airway after inhalation injury

Abstract Objective The aim of the study was to establish an animal model of laryngeal burn and to investigate the temperature distribution of heated air in the upper airway. Methods The animal model was established by inhalation of dry heated air at 80, 160 and 320 °C in 18 healthy, male, adult hybr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Burns 2011-11, Vol.37 (7), p.1187-1191
Hauptverfasser: Rong, Yan-hua, Liu, Wei, Wang, Cheng, Ning, Fang-gang, Zhang, Guo-an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1191
container_issue 7
container_start_page 1187
container_title Burns
container_volume 37
creator Rong, Yan-hua
Liu, Wei
Wang, Cheng
Ning, Fang-gang
Zhang, Guo-an
description Abstract Objective The aim of the study was to establish an animal model of laryngeal burn and to investigate the temperature distribution of heated air in the upper airway. Methods The animal model was established by inhalation of dry heated air at 80, 160 and 320 °C in 18 healthy, male, adult hybrid dogs. Time for inducing injury was set at 20 min. The distribution of temperatures after heated-air inhalation was examined at different locations including the epiglottis, laryngeal vestibule, vocal folds and trachea. Results The temperatures of the heated air decreased to 47.1, 118.4 and 193.8 °C at the laryngeal vestibule and to 39.3, 56.6 and 137.9 °C at the lower margin of vocal folds in the 80, 160 and 320 °C groups, respectively. Conclusion Due to its special anatomy and functions, the larynx has different responses to dry heated air at different temperatures. The air temperature decreases markedly when the air arrives at the larynx. By contrast, the larynx has a low capacity for blocking high-temperature air and retaining heat. As a result, high-temperature air often causes more severe injury to the larynx and the lower airway.
doi_str_mv 10.1016/j.burns.2011.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_893981898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0305417911001902</els_id><sourcerecordid>893981898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b8beb793f6a09469339139fd71764c0ba115a11a4332d0dab19f99e2c1e70d283</originalsourceid><addsrcrecordid>eNqFkV1L5TAQhoMo61H3FwhLb8Sr1pkm_ciFgrjrBwhe6F6HNJ1iuj3tMWlXzr833XNWwRsDIYQ870x4hrFjhAQB87M2qSbX-yQFxATyBEDssAWWhYxRgNxlC-CQxQILuc8OvG8hrKyEb2w_xRLzTOCC_Xyi5YqcHidHUW396Gw1jXboI9tH4zNF0yo8R9q6V72OdDOGi-2fdae3UDu59RHba3Tn6fv2PGS_r389Xd3G9w83d1eX97ERgo9xVVZUFZI3uQYpcsm5RC6busAiFwYqjZiFrQXnaQ21rlA2UlJqkAqo05IfstNN3ZUbXibyo1pab6jrdE_D5FUpuSyxlDPJN6Rxg_eOGrVydqndWiGo2Z5q1T97aranIFfBXkj92NafqiXV75n_ugJwsgW0N7prnO6N9R-cyCQCzNz5hqNg468lp7yx1BuqrSMzqnqwX3zk4lPedLa3oeUfWpNvh5AIohUqnypQj_Og5znj3F1Cyt8Ax8ujLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893981898</pqid></control><display><type>article</type><title>Temperature distribution in the upper airway after inhalation injury</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rong, Yan-hua ; Liu, Wei ; Wang, Cheng ; Ning, Fang-gang ; Zhang, Guo-an</creator><creatorcontrib>Rong, Yan-hua ; Liu, Wei ; Wang, Cheng ; Ning, Fang-gang ; Zhang, Guo-an</creatorcontrib><description>Abstract Objective The aim of the study was to establish an animal model of laryngeal burn and to investigate the temperature distribution of heated air in the upper airway. Methods The animal model was established by inhalation of dry heated air at 80, 160 and 320 °C in 18 healthy, male, adult hybrid dogs. Time for inducing injury was set at 20 min. The distribution of temperatures after heated-air inhalation was examined at different locations including the epiglottis, laryngeal vestibule, vocal folds and trachea. Results The temperatures of the heated air decreased to 47.1, 118.4 and 193.8 °C at the laryngeal vestibule and to 39.3, 56.6 and 137.9 °C at the lower margin of vocal folds in the 80, 160 and 320 °C groups, respectively. Conclusion Due to its special anatomy and functions, the larynx has different responses to dry heated air at different temperatures. The air temperature decreases markedly when the air arrives at the larynx. By contrast, the larynx has a low capacity for blocking high-temperature air and retaining heat. As a result, high-temperature air often causes more severe injury to the larynx and the lower airway.</description><identifier>ISSN: 0305-4179</identifier><identifier>EISSN: 1879-1409</identifier><identifier>DOI: 10.1016/j.burns.2011.06.004</identifier><identifier>PMID: 21816541</identifier><identifier>CODEN: BURND8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Animal model ; Animals ; Biological and medical sciences ; Body Temperature - physiology ; Burns ; Critical Care ; Disease Models, Animal ; Dogs ; Hot Temperature - adverse effects ; Laryngeal burn ; Larynx - injuries ; Larynx - physiology ; Male ; Medical sciences ; Smoke Inhalation Injury - physiopathology ; Temperature distribution ; Trachea - physiology ; Traumas. Diseases due to physical agents ; Upper airway</subject><ispartof>Burns, 2011-11, Vol.37 (7), p.1187-1191</ispartof><rights>Elsevier Ltd and ISBI</rights><rights>2011 Elsevier Ltd and ISBI</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b8beb793f6a09469339139fd71764c0ba115a11a4332d0dab19f99e2c1e70d283</citedby><cites>FETCH-LOGICAL-c443t-b8beb793f6a09469339139fd71764c0ba115a11a4332d0dab19f99e2c1e70d283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305417911001902$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24591001$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21816541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rong, Yan-hua</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Ning, Fang-gang</creatorcontrib><creatorcontrib>Zhang, Guo-an</creatorcontrib><title>Temperature distribution in the upper airway after inhalation injury</title><title>Burns</title><addtitle>Burns</addtitle><description>Abstract Objective The aim of the study was to establish an animal model of laryngeal burn and to investigate the temperature distribution of heated air in the upper airway. Methods The animal model was established by inhalation of dry heated air at 80, 160 and 320 °C in 18 healthy, male, adult hybrid dogs. Time for inducing injury was set at 20 min. The distribution of temperatures after heated-air inhalation was examined at different locations including the epiglottis, laryngeal vestibule, vocal folds and trachea. Results The temperatures of the heated air decreased to 47.1, 118.4 and 193.8 °C at the laryngeal vestibule and to 39.3, 56.6 and 137.9 °C at the lower margin of vocal folds in the 80, 160 and 320 °C groups, respectively. Conclusion Due to its special anatomy and functions, the larynx has different responses to dry heated air at different temperatures. The air temperature decreases markedly when the air arrives at the larynx. By contrast, the larynx has a low capacity for blocking high-temperature air and retaining heat. As a result, high-temperature air often causes more severe injury to the larynx and the lower airway.</description><subject>Animal model</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Body Temperature - physiology</subject><subject>Burns</subject><subject>Critical Care</subject><subject>Disease Models, Animal</subject><subject>Dogs</subject><subject>Hot Temperature - adverse effects</subject><subject>Laryngeal burn</subject><subject>Larynx - injuries</subject><subject>Larynx - physiology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Smoke Inhalation Injury - physiopathology</subject><subject>Temperature distribution</subject><subject>Trachea - physiology</subject><subject>Traumas. Diseases due to physical agents</subject><subject>Upper airway</subject><issn>0305-4179</issn><issn>1879-1409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1L5TAQhoMo61H3FwhLb8Sr1pkm_ciFgrjrBwhe6F6HNJ1iuj3tMWlXzr833XNWwRsDIYQ870x4hrFjhAQB87M2qSbX-yQFxATyBEDssAWWhYxRgNxlC-CQxQILuc8OvG8hrKyEb2w_xRLzTOCC_Xyi5YqcHidHUW396Gw1jXboI9tH4zNF0yo8R9q6V72OdDOGi-2fdae3UDu59RHba3Tn6fv2PGS_r389Xd3G9w83d1eX97ERgo9xVVZUFZI3uQYpcsm5RC6busAiFwYqjZiFrQXnaQ21rlA2UlJqkAqo05IfstNN3ZUbXibyo1pab6jrdE_D5FUpuSyxlDPJN6Rxg_eOGrVydqndWiGo2Z5q1T97aranIFfBXkj92NafqiXV75n_ugJwsgW0N7prnO6N9R-cyCQCzNz5hqNg468lp7yx1BuqrSMzqnqwX3zk4lPedLa3oeUfWpNvh5AIohUqnypQj_Og5znj3F1Cyt8Ax8ujLA</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Rong, Yan-hua</creator><creator>Liu, Wei</creator><creator>Wang, Cheng</creator><creator>Ning, Fang-gang</creator><creator>Zhang, Guo-an</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>Temperature distribution in the upper airway after inhalation injury</title><author>Rong, Yan-hua ; Liu, Wei ; Wang, Cheng ; Ning, Fang-gang ; Zhang, Guo-an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b8beb793f6a09469339139fd71764c0ba115a11a4332d0dab19f99e2c1e70d283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal model</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Body Temperature - physiology</topic><topic>Burns</topic><topic>Critical Care</topic><topic>Disease Models, Animal</topic><topic>Dogs</topic><topic>Hot Temperature - adverse effects</topic><topic>Laryngeal burn</topic><topic>Larynx - injuries</topic><topic>Larynx - physiology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Smoke Inhalation Injury - physiopathology</topic><topic>Temperature distribution</topic><topic>Trachea - physiology</topic><topic>Traumas. Diseases due to physical agents</topic><topic>Upper airway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong, Yan-hua</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Ning, Fang-gang</creatorcontrib><creatorcontrib>Zhang, Guo-an</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Burns</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rong, Yan-hua</au><au>Liu, Wei</au><au>Wang, Cheng</au><au>Ning, Fang-gang</au><au>Zhang, Guo-an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature distribution in the upper airway after inhalation injury</atitle><jtitle>Burns</jtitle><addtitle>Burns</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>37</volume><issue>7</issue><spage>1187</spage><epage>1191</epage><pages>1187-1191</pages><issn>0305-4179</issn><eissn>1879-1409</eissn><coden>BURND8</coden><abstract>Abstract Objective The aim of the study was to establish an animal model of laryngeal burn and to investigate the temperature distribution of heated air in the upper airway. Methods The animal model was established by inhalation of dry heated air at 80, 160 and 320 °C in 18 healthy, male, adult hybrid dogs. Time for inducing injury was set at 20 min. The distribution of temperatures after heated-air inhalation was examined at different locations including the epiglottis, laryngeal vestibule, vocal folds and trachea. Results The temperatures of the heated air decreased to 47.1, 118.4 and 193.8 °C at the laryngeal vestibule and to 39.3, 56.6 and 137.9 °C at the lower margin of vocal folds in the 80, 160 and 320 °C groups, respectively. Conclusion Due to its special anatomy and functions, the larynx has different responses to dry heated air at different temperatures. The air temperature decreases markedly when the air arrives at the larynx. By contrast, the larynx has a low capacity for blocking high-temperature air and retaining heat. As a result, high-temperature air often causes more severe injury to the larynx and the lower airway.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21816541</pmid><doi>10.1016/j.burns.2011.06.004</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-4179
ispartof Burns, 2011-11, Vol.37 (7), p.1187-1191
issn 0305-4179
1879-1409
language eng
recordid cdi_proquest_miscellaneous_893981898
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animal model
Animals
Biological and medical sciences
Body Temperature - physiology
Burns
Critical Care
Disease Models, Animal
Dogs
Hot Temperature - adverse effects
Laryngeal burn
Larynx - injuries
Larynx - physiology
Male
Medical sciences
Smoke Inhalation Injury - physiopathology
Temperature distribution
Trachea - physiology
Traumas. Diseases due to physical agents
Upper airway
title Temperature distribution in the upper airway after inhalation injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20distribution%20in%20the%20upper%20airway%20after%20inhalation%20injury&rft.jtitle=Burns&rft.au=Rong,%20Yan-hua&rft.date=2011-11-01&rft.volume=37&rft.issue=7&rft.spage=1187&rft.epage=1191&rft.pages=1187-1191&rft.issn=0305-4179&rft.eissn=1879-1409&rft.coden=BURND8&rft_id=info:doi/10.1016/j.burns.2011.06.004&rft_dat=%3Cproquest_cross%3E893981898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893981898&rft_id=info:pmid/21816541&rft_els_id=1_s2_0_S0305417911001902&rfr_iscdi=true