All-semiconductor active plasmonic system in mid-infrared wavelengths

Metal-based plasmonics has a wide range of important applications but is subject to several drawbacks. In this paper, we propose and investigate an all-semiconductor-based approach to plasmonics in mid-infrared (MIR) wavelength range using InAs heterostructures. Our results show that InAs heterostru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2011-07, Vol.19 (15), p.14594-14603
Hauptverfasser: Li, Debin, Ning, C Z
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal-based plasmonics has a wide range of important applications but is subject to several drawbacks. In this paper, we propose and investigate an all-semiconductor-based approach to plasmonics in mid-infrared (MIR) wavelength range using InAs heterostructures. Our results show that InAs heterostructures are ideal for plasmonics with the shortest plasmon wavelength among common semiconductors. More importantly, as we will show, InAs heterostructures are superior to metal-based plasmonics for MIR applications due to much reduced loss, improved confinement, and ease of tunability of resonant wavelengths through carrier density. Finally, we propose and investigate a monolithic all-semiconductor integrated active plasmonic system with active source, waveguide, and detector all integrated on a chip, realizable in a single epitaxial growth process. Such an all semiconductor based system can be advantageous not only in plasmonics, but also in active metamaterials.
ISSN:1094-4087
DOI:10.1364/OE.19.014594