Subensemble decomposition and Markov process analysis of Burgers turbulence
A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group v...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 2), p.026326-026326, Article 026326 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 026326 |
---|---|
container_issue | 2 Pt 2 |
container_start_page | 026326 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 84 |
creator | Zhang, Zhi-Xiong She, Zhen-Su |
description | A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field, while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction waves during the equation's evolution displays in accordance with a Markov process, which has a stationary transition probability matrix with the elements satisfying universal functions and, when the time interval is much greater than the corresponding characteristic value, exhibits the scale-invariant property. |
doi_str_mv | 10.1103/PhysRevE.84.026326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_893314733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893314733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-a6a10b12837468b997dcfaefa55db516064caca5c3c17b66633905d7001215dc3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwBzig3Dil2N7YiY9QlYcoAvE4W47jQCCJizep1H9PqracZjWaGa0-Qs4ZnTJG4erla42vbjWfZsmUcglcHpAxE4LGHFJ5uLlBxZAKMSIniN-UAocsOSYjzhRXjKoxeXzrc9eia_LaRYWzvll6rLrKt5Fpi-jJhB-_ipbBW4c4WKZeY4WRL6ObPny6gFHXh7yvXWvdKTkqTY3ubKcT8nE7f5_dx4vnu4fZ9SK2kMguNtIwmjOeQZrILFcqLWxpXGmEKHLBJJWJNdYIC5aluZQSQFFRpJQyzkRhYUIut7vDW7-9w043FVpX16Z1vkedKQCWpABDkm-TNnjE4Eq9DFVjwlozqjcM9Z6hzhK9ZTiULnbzfd644r-yhwZ_uKhvXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893314733</pqid></control><display><type>article</type><title>Subensemble decomposition and Markov process analysis of Burgers turbulence</title><source>American Physical Society Journals</source><creator>Zhang, Zhi-Xiong ; She, Zhen-Su</creator><creatorcontrib>Zhang, Zhi-Xiong ; She, Zhen-Su</creatorcontrib><description>A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field, while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction waves during the equation's evolution displays in accordance with a Markov process, which has a stationary transition probability matrix with the elements satisfying universal functions and, when the time interval is much greater than the corresponding characteristic value, exhibits the scale-invariant property.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.84.026326</identifier><identifier>PMID: 21929109</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 2), p.026326-026326, Article 026326</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-a6a10b12837468b997dcfaefa55db516064caca5c3c17b66633905d7001215dc3</citedby><cites>FETCH-LOGICAL-c346t-a6a10b12837468b997dcfaefa55db516064caca5c3c17b66633905d7001215dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21929109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhi-Xiong</creatorcontrib><creatorcontrib>She, Zhen-Su</creatorcontrib><title>Subensemble decomposition and Markov process analysis of Burgers turbulence</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field, while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction waves during the equation's evolution displays in accordance with a Markov process, which has a stationary transition probability matrix with the elements satisfying universal functions and, when the time interval is much greater than the corresponding characteristic value, exhibits the scale-invariant property.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqXwBzig3Dil2N7YiY9QlYcoAvE4W47jQCCJizep1H9PqracZjWaGa0-Qs4ZnTJG4erla42vbjWfZsmUcglcHpAxE4LGHFJ5uLlBxZAKMSIniN-UAocsOSYjzhRXjKoxeXzrc9eia_LaRYWzvll6rLrKt5Fpi-jJhB-_ipbBW4c4WKZeY4WRL6ObPny6gFHXh7yvXWvdKTkqTY3ubKcT8nE7f5_dx4vnu4fZ9SK2kMguNtIwmjOeQZrILFcqLWxpXGmEKHLBJJWJNdYIC5aluZQSQFFRpJQyzkRhYUIut7vDW7-9w043FVpX16Z1vkedKQCWpABDkm-TNnjE4Eq9DFVjwlozqjcM9Z6hzhK9ZTiULnbzfd644r-yhwZ_uKhvXA</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Zhang, Zhi-Xiong</creator><creator>She, Zhen-Su</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201108</creationdate><title>Subensemble decomposition and Markov process analysis of Burgers turbulence</title><author>Zhang, Zhi-Xiong ; She, Zhen-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-a6a10b12837468b997dcfaefa55db516064caca5c3c17b66633905d7001215dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhi-Xiong</creatorcontrib><creatorcontrib>She, Zhen-Su</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhi-Xiong</au><au>She, Zhen-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subensemble decomposition and Markov process analysis of Burgers turbulence</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2011-08</date><risdate>2011</risdate><volume>84</volume><issue>2 Pt 2</issue><spage>026326</spage><epage>026326</epage><pages>026326-026326</pages><artnum>026326</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field, while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction waves during the equation's evolution displays in accordance with a Markov process, which has a stationary transition probability matrix with the elements satisfying universal functions and, when the time interval is much greater than the corresponding characteristic value, exhibits the scale-invariant property.</abstract><cop>United States</cop><pmid>21929109</pmid><doi>10.1103/PhysRevE.84.026326</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 2), p.026326-026326, Article 026326 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_893314733 |
source | American Physical Society Journals |
title | Subensemble decomposition and Markov process analysis of Burgers turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subensemble%20decomposition%20and%20Markov%20process%20analysis%20of%20Burgers%20turbulence&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Zhang,%20Zhi-Xiong&rft.date=2011-08&rft.volume=84&rft.issue=2%20Pt%202&rft.spage=026326&rft.epage=026326&rft.pages=026326-026326&rft.artnum=026326&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.84.026326&rft_dat=%3Cproquest_cross%3E893314733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893314733&rft_id=info:pmid/21929109&rfr_iscdi=true |