Subensemble decomposition and Markov process analysis of Burgers turbulence

A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 2), p.026326-026326, Article 026326
Hauptverfasser: Zhang, Zhi-Xiong, She, Zhen-Su
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 026326
container_issue 2 Pt 2
container_start_page 026326
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 84
creator Zhang, Zhi-Xiong
She, Zhen-Su
description A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field, while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction waves during the equation's evolution displays in accordance with a Markov process, which has a stationary transition probability matrix with the elements satisfying universal functions and, when the time interval is much greater than the corresponding characteristic value, exhibits the scale-invariant property.
doi_str_mv 10.1103/PhysRevE.84.026326
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_893314733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893314733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-a6a10b12837468b997dcfaefa55db516064caca5c3c17b66633905d7001215dc3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwBzig3Dil2N7YiY9QlYcoAvE4W47jQCCJizep1H9PqracZjWaGa0-Qs4ZnTJG4erla42vbjWfZsmUcglcHpAxE4LGHFJ5uLlBxZAKMSIniN-UAocsOSYjzhRXjKoxeXzrc9eia_LaRYWzvll6rLrKt5Fpi-jJhB-_ipbBW4c4WKZeY4WRL6ObPny6gFHXh7yvXWvdKTkqTY3ubKcT8nE7f5_dx4vnu4fZ9SK2kMguNtIwmjOeQZrILFcqLWxpXGmEKHLBJJWJNdYIC5aluZQSQFFRpJQyzkRhYUIut7vDW7-9w043FVpX16Z1vkedKQCWpABDkm-TNnjE4Eq9DFVjwlozqjcM9Z6hzhK9ZTiULnbzfd644r-yhwZ_uKhvXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893314733</pqid></control><display><type>article</type><title>Subensemble decomposition and Markov process analysis of Burgers turbulence</title><source>American Physical Society Journals</source><creator>Zhang, Zhi-Xiong ; She, Zhen-Su</creator><creatorcontrib>Zhang, Zhi-Xiong ; She, Zhen-Su</creatorcontrib><description>A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field, while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction waves during the equation's evolution displays in accordance with a Markov process, which has a stationary transition probability matrix with the elements satisfying universal functions and, when the time interval is much greater than the corresponding characteristic value, exhibits the scale-invariant property.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.84.026326</identifier><identifier>PMID: 21929109</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 2), p.026326-026326, Article 026326</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-a6a10b12837468b997dcfaefa55db516064caca5c3c17b66633905d7001215dc3</citedby><cites>FETCH-LOGICAL-c346t-a6a10b12837468b997dcfaefa55db516064caca5c3c17b66633905d7001215dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21929109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhi-Xiong</creatorcontrib><creatorcontrib>She, Zhen-Su</creatorcontrib><title>Subensemble decomposition and Markov process analysis of Burgers turbulence</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field, while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction waves during the equation's evolution displays in accordance with a Markov process, which has a stationary transition probability matrix with the elements satisfying universal functions and, when the time interval is much greater than the corresponding characteristic value, exhibits the scale-invariant property.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqXwBzig3Dil2N7YiY9QlYcoAvE4W47jQCCJizep1H9PqracZjWaGa0-Qs4ZnTJG4erla42vbjWfZsmUcglcHpAxE4LGHFJ5uLlBxZAKMSIniN-UAocsOSYjzhRXjKoxeXzrc9eia_LaRYWzvll6rLrKt5Fpi-jJhB-_ipbBW4c4WKZeY4WRL6ObPny6gFHXh7yvXWvdKTkqTY3ubKcT8nE7f5_dx4vnu4fZ9SK2kMguNtIwmjOeQZrILFcqLWxpXGmEKHLBJJWJNdYIC5aluZQSQFFRpJQyzkRhYUIut7vDW7-9w043FVpX16Z1vkedKQCWpABDkm-TNnjE4Eq9DFVjwlozqjcM9Z6hzhK9ZTiULnbzfd644r-yhwZ_uKhvXA</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Zhang, Zhi-Xiong</creator><creator>She, Zhen-Su</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201108</creationdate><title>Subensemble decomposition and Markov process analysis of Burgers turbulence</title><author>Zhang, Zhi-Xiong ; She, Zhen-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-a6a10b12837468b997dcfaefa55db516064caca5c3c17b66633905d7001215dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhi-Xiong</creatorcontrib><creatorcontrib>She, Zhen-Su</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhi-Xiong</au><au>She, Zhen-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subensemble decomposition and Markov process analysis of Burgers turbulence</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2011-08</date><risdate>2011</risdate><volume>84</volume><issue>2 Pt 2</issue><spage>026326</spage><epage>026326</epage><pages>026326-026326</pages><artnum>026326</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field, while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction waves during the equation's evolution displays in accordance with a Markov process, which has a stationary transition probability matrix with the elements satisfying universal functions and, when the time interval is much greater than the corresponding characteristic value, exhibits the scale-invariant property.</abstract><cop>United States</cop><pmid>21929109</pmid><doi>10.1103/PhysRevE.84.026326</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 2), p.026326-026326, Article 026326
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_893314733
source American Physical Society Journals
title Subensemble decomposition and Markov process analysis of Burgers turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subensemble%20decomposition%20and%20Markov%20process%20analysis%20of%20Burgers%20turbulence&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Zhang,%20Zhi-Xiong&rft.date=2011-08&rft.volume=84&rft.issue=2%20Pt%202&rft.spage=026326&rft.epage=026326&rft.pages=026326-026326&rft.artnum=026326&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.84.026326&rft_dat=%3Cproquest_cross%3E893314733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893314733&rft_id=info:pmid/21929109&rfr_iscdi=true