Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability

Effects of Darrieus-Landau (DL) instability on the structure and propagation of turbulent premixed flame fronts are considered. By first hypothesizing separation of time scales of instability and turbulence, we estimate whether the instability can develop in the presence of turbulence of given flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review E 2011-08, Vol.84 (2 Pt 2), p.026322-026322, Article 026322
Hauptverfasser: Chaudhuri, Swetaprovo, Akkerman, V'yacheslav, Law, Chung K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 026322
container_issue 2 Pt 2
container_start_page 026322
container_title Physical Review E
container_volume 84
creator Chaudhuri, Swetaprovo
Akkerman, V'yacheslav
Law, Chung K
description Effects of Darrieus-Landau (DL) instability on the structure and propagation of turbulent premixed flame fronts are considered. By first hypothesizing separation of time scales of instability and turbulence, we estimate whether the instability can develop in the presence of turbulence of given flow rms-velocity and integral length scale. As a result, we modify the standard turbulent premixed combustion regime diagram by introducing new boundaries, limiting the domain where the instability influences the global flame shape and speed. Based on this analysis, a "turbulence-induced DL cutoff" as a function of turbulence and instability parameters is introduced, which when combined with a turbulent flame speed without DL instability yields the turbulent flame speed accounting for the instability. The consumption turbulent flame speed for no DL instability is formulated from the spectral closure of the G equation, thus accounting for the scale-dependent "turbulent" nature of the problem. Finally, an analytical form of the turbulent flame speed is derived, which is found to agree well with the corresponding experimentally measured turbulent flame speed from literature over wide ranges of normalized turbulence intensities and length scales.
doi_str_mv 10.1103/PhysRevE.84.026322
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_893314658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893314658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-89f0534eb75946ffdacebc27c99ffe6e2671ec3805c998d5650c52b948c521f33</originalsourceid><addsrcrecordid>eNo9kMtKxTAQhoMo3l_AhRQ3rnrMpWmTpYg3EBQvOyGk6YQTaZtjkip9e3M46mqG4ZufmQ-hE4IXhGB28bSc4zN8XS9EtcC0ZpRuoX3COS4pa-rtdc9kyRrO99BBjB8YM8pEtYv2KJFUEsz30fvLCkwKui-sD8PU6-T8WHhbpCm0Uw9jKmyvByjiCqArvl1aFsaP0XUQ_tnl3AXfzaMenCncGJNuXe_SfIR2rO4jHP_WQ_R2c_16dVc-PN7eX10-lIY1IpVCWsxZBW3DZVVb22kDraGNkdJaqIHWDQHDBOZ5Ijpec2w4bWUlciGWsUN0tsn1MTkVjUtglvnKMb-mCK6zGpmh8w20Cv5zgpjU4KKBvtcj-CkqIRkjVc1FJumGNMHHGMCqVXCDDnPOUmvz6s-8EpXamM9Lp7_xUztA97_yp5r9AIgbgl0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893314658</pqid></control><display><type>article</type><title>Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability</title><source>American Physical Society Journals</source><creator>Chaudhuri, Swetaprovo ; Akkerman, V'yacheslav ; Law, Chung K</creator><creatorcontrib>Chaudhuri, Swetaprovo ; Akkerman, V'yacheslav ; Law, Chung K ; Energy Frontier Research Centers (EFRC) ; Combustion Energy Frontier Research Center (CEFRC)</creatorcontrib><description>Effects of Darrieus-Landau (DL) instability on the structure and propagation of turbulent premixed flame fronts are considered. By first hypothesizing separation of time scales of instability and turbulence, we estimate whether the instability can develop in the presence of turbulence of given flow rms-velocity and integral length scale. As a result, we modify the standard turbulent premixed combustion regime diagram by introducing new boundaries, limiting the domain where the instability influences the global flame shape and speed. Based on this analysis, a "turbulence-induced DL cutoff" as a function of turbulence and instability parameters is introduced, which when combined with a turbulent flame speed without DL instability yields the turbulent flame speed accounting for the instability. The consumption turbulent flame speed for no DL instability is formulated from the spectral closure of the G equation, thus accounting for the scale-dependent "turbulent" nature of the problem. Finally, an analytical form of the turbulent flame speed is derived, which is found to agree well with the corresponding experimentally measured turbulent flame speed from literature over wide ranges of normalized turbulence intensities and length scales.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.84.026322</identifier><identifier>PMID: 21929105</identifier><language>eng</language><publisher>United States</publisher><subject>biofuels (including algae and biomass), hydrogen and fuel cells, combustion, carbon capture</subject><ispartof>Physical Review E, 2011-08, Vol.84 (2 Pt 2), p.026322-026322, Article 026322</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-89f0534eb75946ffdacebc27c99ffe6e2671ec3805c998d5650c52b948c521f33</citedby><cites>FETCH-LOGICAL-c378t-89f0534eb75946ffdacebc27c99ffe6e2671ec3805c998d5650c52b948c521f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21929105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1066329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhuri, Swetaprovo</creatorcontrib><creatorcontrib>Akkerman, V'yacheslav</creatorcontrib><creatorcontrib>Law, Chung K</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Combustion Energy Frontier Research Center (CEFRC)</creatorcontrib><title>Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability</title><title>Physical Review E</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Effects of Darrieus-Landau (DL) instability on the structure and propagation of turbulent premixed flame fronts are considered. By first hypothesizing separation of time scales of instability and turbulence, we estimate whether the instability can develop in the presence of turbulence of given flow rms-velocity and integral length scale. As a result, we modify the standard turbulent premixed combustion regime diagram by introducing new boundaries, limiting the domain where the instability influences the global flame shape and speed. Based on this analysis, a "turbulence-induced DL cutoff" as a function of turbulence and instability parameters is introduced, which when combined with a turbulent flame speed without DL instability yields the turbulent flame speed accounting for the instability. The consumption turbulent flame speed for no DL instability is formulated from the spectral closure of the G equation, thus accounting for the scale-dependent "turbulent" nature of the problem. Finally, an analytical form of the turbulent flame speed is derived, which is found to agree well with the corresponding experimentally measured turbulent flame speed from literature over wide ranges of normalized turbulence intensities and length scales.</description><subject>biofuels (including algae and biomass), hydrogen and fuel cells, combustion, carbon capture</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKxTAQhoMo3l_AhRQ3rnrMpWmTpYg3EBQvOyGk6YQTaZtjkip9e3M46mqG4ZufmQ-hE4IXhGB28bSc4zN8XS9EtcC0ZpRuoX3COS4pa-rtdc9kyRrO99BBjB8YM8pEtYv2KJFUEsz30fvLCkwKui-sD8PU6-T8WHhbpCm0Uw9jKmyvByjiCqArvl1aFsaP0XUQ_tnl3AXfzaMenCncGJNuXe_SfIR2rO4jHP_WQ_R2c_16dVc-PN7eX10-lIY1IpVCWsxZBW3DZVVb22kDraGNkdJaqIHWDQHDBOZ5Ijpec2w4bWUlciGWsUN0tsn1MTkVjUtglvnKMb-mCK6zGpmh8w20Cv5zgpjU4KKBvtcj-CkqIRkjVc1FJumGNMHHGMCqVXCDDnPOUmvz6s-8EpXamM9Lp7_xUztA97_yp5r9AIgbgl0</recordid><startdate>20110819</startdate><enddate>20110819</enddate><creator>Chaudhuri, Swetaprovo</creator><creator>Akkerman, V'yacheslav</creator><creator>Law, Chung K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110819</creationdate><title>Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability</title><author>Chaudhuri, Swetaprovo ; Akkerman, V'yacheslav ; Law, Chung K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-89f0534eb75946ffdacebc27c99ffe6e2671ec3805c998d5650c52b948c521f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>biofuels (including algae and biomass), hydrogen and fuel cells, combustion, carbon capture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhuri, Swetaprovo</creatorcontrib><creatorcontrib>Akkerman, V'yacheslav</creatorcontrib><creatorcontrib>Law, Chung K</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Combustion Energy Frontier Research Center (CEFRC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical Review E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhuri, Swetaprovo</au><au>Akkerman, V'yacheslav</au><au>Law, Chung K</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Combustion Energy Frontier Research Center (CEFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability</atitle><jtitle>Physical Review E</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2011-08-19</date><risdate>2011</risdate><volume>84</volume><issue>2 Pt 2</issue><spage>026322</spage><epage>026322</epage><pages>026322-026322</pages><artnum>026322</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Effects of Darrieus-Landau (DL) instability on the structure and propagation of turbulent premixed flame fronts are considered. By first hypothesizing separation of time scales of instability and turbulence, we estimate whether the instability can develop in the presence of turbulence of given flow rms-velocity and integral length scale. As a result, we modify the standard turbulent premixed combustion regime diagram by introducing new boundaries, limiting the domain where the instability influences the global flame shape and speed. Based on this analysis, a "turbulence-induced DL cutoff" as a function of turbulence and instability parameters is introduced, which when combined with a turbulent flame speed without DL instability yields the turbulent flame speed accounting for the instability. The consumption turbulent flame speed for no DL instability is formulated from the spectral closure of the G equation, thus accounting for the scale-dependent "turbulent" nature of the problem. Finally, an analytical form of the turbulent flame speed is derived, which is found to agree well with the corresponding experimentally measured turbulent flame speed from literature over wide ranges of normalized turbulence intensities and length scales.</abstract><cop>United States</cop><pmid>21929105</pmid><doi>10.1103/PhysRevE.84.026322</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical Review E, 2011-08, Vol.84 (2 Pt 2), p.026322-026322, Article 026322
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_893314658
source American Physical Society Journals
subjects biofuels (including algae and biomass), hydrogen and fuel cells, combustion, carbon capture
title Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20formulation%20of%20turbulent%20flame%20speed%20with%20consideration%20of%20hydrodynamic%20instability&rft.jtitle=Physical%20Review%20E&rft.au=Chaudhuri,%20Swetaprovo&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2011-08-19&rft.volume=84&rft.issue=2%20Pt%202&rft.spage=026322&rft.epage=026322&rft.pages=026322-026322&rft.artnum=026322&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.84.026322&rft_dat=%3Cproquest_osti_%3E893314658%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893314658&rft_id=info:pmid/21929105&rfr_iscdi=true