Histone deacetylase inhibitor MS‐275 stimulates bone formation in part by enhancing Dhx36‐mediated TNAP transcription
Histone deacetylases (HDACs) deacetylate both histones and nonhistone proteins and play a key role in the regulation of physiologic and aberrant gene expression. Inhibition of HDACs has emerged as a promising therapeutic target for cancer and neurologic diseases. In this study we investigated the os...
Gespeichert in:
Veröffentlicht in: | Journal of bone and mineral research 2011-09, Vol.26 (9), p.2161-2173 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2173 |
---|---|
container_issue | 9 |
container_start_page | 2161 |
container_title | Journal of bone and mineral research |
container_volume | 26 |
creator | Kim, Ha‐Neui Lee, Jong‐Ho Bae, Suk‐Chul Ryoo, Hyun‐Mo Kim, Hong‐Hee Ha, Hyunil Lee, Zang Hee |
description | Histone deacetylases (HDACs) deacetylate both histones and nonhistone proteins and play a key role in the regulation of physiologic and aberrant gene expression. Inhibition of HDACs has emerged as a promising therapeutic target for cancer and neurologic diseases. In this study we investigated the osteogenic effect and mechanism of action of MS‐275, a class I HDAC inhibitor with preference for HDAC1. Both local and systemic administration of MS‐275 stimulated bone regeneration in animal models. MS‐275 stimulated mRNA expression and activity of the early osteogenic marker tissue‐nonspecific alkaline phosphatase (TNAP) in bone tissue and osteogenic cells. By using a series of TNAP promoter deletion constructs and a DNA affinity precipitation assay, we identified DExH‐box helicase Dhx36 as a factor that binds to the MS‐275 response element in the TNAP promoter. We also found that Dhx36 binding to the MS‐275 response element is crucial for MS‐275 induction of TNAP transcription. Dhx36 physically interacted with a subset of HDACs (HDAC1 and ‐4) whose protein levels were downregulated by MS‐275, and forced expression of these HDACs blunted the stimulatory effects of MS‐275 by a deacetylase activity–independent mechanism(s). Taken together, the results of our study show that MS‐275 induces TNAP transcription by decreasing the interaction of HDAC1/4 with Dhx36, which can at least in part contribute to the bone anabolic effects of MS‐275. © 2011 American Society for Bone and Mineral Research |
doi_str_mv | 10.1002/jbmr.426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_893284814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893284814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5096-c0073f1f94f882d8b3e2522c634c8c6064bc2d9f82d08fd99650c5f59c8952f43</originalsourceid><addsrcrecordid>eNp90c1OFTEUB_CGaOCCJD6BaUIMbgb7fdsl4AcaUCO4nnQ6Lbc3M51L24nOzkfwGX0SO-EqiYmuuujvnNOePwBPMTrBCJGX66aPJ4yIHbDAnNCKCYkfgQWSklWIUbwH9lNaI4QEF2IX7BHMFVpSsQDThU95CBa2Vhubp04nC31Y-cbnIcKr65_ff5Alhyn7fux0tgk2M3dD7HX2QygYbnTMsJmgDSsdjA-38NXqGxWltLetL0UtvPlw-gnmqEMy0W_mwifgsdNdsofb8wB8efP65vyiuvz49t356WVlOFKiMqg81GGnmJOStLKhlnBCjKDMSCOQYI0hrXLlDknXKiU4MtxxZaTixDF6AI7v-27icDfalOveJ2O7Tgc7jKmWihLJJJ7li_9KLJdFMiJFoUd_0fUwxlD-UZQQnChB5UNDE4eUonX1Jvpex6nGqJ6Dq-fg6hJcoc-2DcemLO0P_J1UAc-3QCejOxfnTacHx5hQGPPiqnv31Xd2-ufA-v3Z1ed58C-nWq_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866529638</pqid></control><display><type>article</type><title>Histone deacetylase inhibitor MS‐275 stimulates bone formation in part by enhancing Dhx36‐mediated TNAP transcription</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kim, Ha‐Neui ; Lee, Jong‐Ho ; Bae, Suk‐Chul ; Ryoo, Hyun‐Mo ; Kim, Hong‐Hee ; Ha, Hyunil ; Lee, Zang Hee</creator><creatorcontrib>Kim, Ha‐Neui ; Lee, Jong‐Ho ; Bae, Suk‐Chul ; Ryoo, Hyun‐Mo ; Kim, Hong‐Hee ; Ha, Hyunil ; Lee, Zang Hee</creatorcontrib><description>Histone deacetylases (HDACs) deacetylate both histones and nonhistone proteins and play a key role in the regulation of physiologic and aberrant gene expression. Inhibition of HDACs has emerged as a promising therapeutic target for cancer and neurologic diseases. In this study we investigated the osteogenic effect and mechanism of action of MS‐275, a class I HDAC inhibitor with preference for HDAC1. Both local and systemic administration of MS‐275 stimulated bone regeneration in animal models. MS‐275 stimulated mRNA expression and activity of the early osteogenic marker tissue‐nonspecific alkaline phosphatase (TNAP) in bone tissue and osteogenic cells. By using a series of TNAP promoter deletion constructs and a DNA affinity precipitation assay, we identified DExH‐box helicase Dhx36 as a factor that binds to the MS‐275 response element in the TNAP promoter. We also found that Dhx36 binding to the MS‐275 response element is crucial for MS‐275 induction of TNAP transcription. Dhx36 physically interacted with a subset of HDACs (HDAC1 and ‐4) whose protein levels were downregulated by MS‐275, and forced expression of these HDACs blunted the stimulatory effects of MS‐275 by a deacetylase activity–independent mechanism(s). Taken together, the results of our study show that MS‐275 induces TNAP transcription by decreasing the interaction of HDAC1/4 with Dhx36, which can at least in part contribute to the bone anabolic effects of MS‐275. © 2011 American Society for Bone and Mineral Research</description><identifier>ISSN: 0884-0431</identifier><identifier>EISSN: 1523-4681</identifier><identifier>DOI: 10.1002/jbmr.426</identifier><identifier>PMID: 21590736</identifier><identifier>CODEN: JBMREJ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alkaline Phosphatase - genetics ; Alkaline Phosphatase - metabolism ; Animals ; Base Sequence ; Benzamides - administration & dosage ; Benzamides - pharmacology ; Biological and medical sciences ; Bone Regeneration - drug effects ; Cell Differentiation - drug effects ; Cell Line ; DEAD-box RNA Helicases - metabolism ; DHX36 ; Fundamental and applied biological sciences. Psychology ; Gene Knockdown Techniques ; HISTONE DEACETYLASE ; Histone Deacetylase Inhibitors - administration & dosage ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylases - metabolism ; Humans ; Isoenzymes - metabolism ; Male ; Mice ; Molecular Sequence Data ; MS‐275 ; OSTEOBLAST ; Osteogenesis - drug effects ; Protein Binding - drug effects ; Pyridines - administration & dosage ; Pyridines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Response Elements - genetics ; Skeleton and joints ; TISSUE‐NONSPECIFIC ALKALINE PHOSPHATASE (TNAP) ; Transcription, Genetic - drug effects ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>Journal of bone and mineral research, 2011-09, Vol.26 (9), p.2161-2173</ispartof><rights>Copyright © 2011 American Society for Bone and Mineral Research</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 American Society for Bone and Mineral Research.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5096-c0073f1f94f882d8b3e2522c634c8c6064bc2d9f82d08fd99650c5f59c8952f43</citedby><cites>FETCH-LOGICAL-c5096-c0073f1f94f882d8b3e2522c634c8c6064bc2d9f82d08fd99650c5f59c8952f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbmr.426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbmr.426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24469115$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21590736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ha‐Neui</creatorcontrib><creatorcontrib>Lee, Jong‐Ho</creatorcontrib><creatorcontrib>Bae, Suk‐Chul</creatorcontrib><creatorcontrib>Ryoo, Hyun‐Mo</creatorcontrib><creatorcontrib>Kim, Hong‐Hee</creatorcontrib><creatorcontrib>Ha, Hyunil</creatorcontrib><creatorcontrib>Lee, Zang Hee</creatorcontrib><title>Histone deacetylase inhibitor MS‐275 stimulates bone formation in part by enhancing Dhx36‐mediated TNAP transcription</title><title>Journal of bone and mineral research</title><addtitle>J Bone Miner Res</addtitle><description>Histone deacetylases (HDACs) deacetylate both histones and nonhistone proteins and play a key role in the regulation of physiologic and aberrant gene expression. Inhibition of HDACs has emerged as a promising therapeutic target for cancer and neurologic diseases. In this study we investigated the osteogenic effect and mechanism of action of MS‐275, a class I HDAC inhibitor with preference for HDAC1. Both local and systemic administration of MS‐275 stimulated bone regeneration in animal models. MS‐275 stimulated mRNA expression and activity of the early osteogenic marker tissue‐nonspecific alkaline phosphatase (TNAP) in bone tissue and osteogenic cells. By using a series of TNAP promoter deletion constructs and a DNA affinity precipitation assay, we identified DExH‐box helicase Dhx36 as a factor that binds to the MS‐275 response element in the TNAP promoter. We also found that Dhx36 binding to the MS‐275 response element is crucial for MS‐275 induction of TNAP transcription. Dhx36 physically interacted with a subset of HDACs (HDAC1 and ‐4) whose protein levels were downregulated by MS‐275, and forced expression of these HDACs blunted the stimulatory effects of MS‐275 by a deacetylase activity–independent mechanism(s). Taken together, the results of our study show that MS‐275 induces TNAP transcription by decreasing the interaction of HDAC1/4 with Dhx36, which can at least in part contribute to the bone anabolic effects of MS‐275. © 2011 American Society for Bone and Mineral Research</description><subject>Alkaline Phosphatase - genetics</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Benzamides - administration & dosage</subject><subject>Benzamides - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Bone Regeneration - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>DEAD-box RNA Helicases - metabolism</subject><subject>DHX36</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Knockdown Techniques</subject><subject>HISTONE DEACETYLASE</subject><subject>Histone Deacetylase Inhibitors - administration & dosage</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylases - metabolism</subject><subject>Humans</subject><subject>Isoenzymes - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>MS‐275</subject><subject>OSTEOBLAST</subject><subject>Osteogenesis - drug effects</subject><subject>Protein Binding - drug effects</subject><subject>Pyridines - administration & dosage</subject><subject>Pyridines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Response Elements - genetics</subject><subject>Skeleton and joints</subject><subject>TISSUE‐NONSPECIFIC ALKALINE PHOSPHATASE (TNAP)</subject><subject>Transcription, Genetic - drug effects</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>0884-0431</issn><issn>1523-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c1OFTEUB_CGaOCCJD6BaUIMbgb7fdsl4AcaUCO4nnQ6Lbc3M51L24nOzkfwGX0SO-EqiYmuuujvnNOePwBPMTrBCJGX66aPJ4yIHbDAnNCKCYkfgQWSklWIUbwH9lNaI4QEF2IX7BHMFVpSsQDThU95CBa2Vhubp04nC31Y-cbnIcKr65_ff5Alhyn7fux0tgk2M3dD7HX2QygYbnTMsJmgDSsdjA-38NXqGxWltLetL0UtvPlw-gnmqEMy0W_mwifgsdNdsofb8wB8efP65vyiuvz49t356WVlOFKiMqg81GGnmJOStLKhlnBCjKDMSCOQYI0hrXLlDknXKiU4MtxxZaTixDF6AI7v-27icDfalOveJ2O7Tgc7jKmWihLJJJ7li_9KLJdFMiJFoUd_0fUwxlD-UZQQnChB5UNDE4eUonX1Jvpex6nGqJ6Dq-fg6hJcoc-2DcemLO0P_J1UAc-3QCejOxfnTacHx5hQGPPiqnv31Xd2-ufA-v3Z1ed58C-nWq_e</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Kim, Ha‐Neui</creator><creator>Lee, Jong‐Ho</creator><creator>Bae, Suk‐Chul</creator><creator>Ryoo, Hyun‐Mo</creator><creator>Kim, Hong‐Hee</creator><creator>Ha, Hyunil</creator><creator>Lee, Zang Hee</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>K9.</scope><scope>7TM</scope></search><sort><creationdate>201109</creationdate><title>Histone deacetylase inhibitor MS‐275 stimulates bone formation in part by enhancing Dhx36‐mediated TNAP transcription</title><author>Kim, Ha‐Neui ; Lee, Jong‐Ho ; Bae, Suk‐Chul ; Ryoo, Hyun‐Mo ; Kim, Hong‐Hee ; Ha, Hyunil ; Lee, Zang Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5096-c0073f1f94f882d8b3e2522c634c8c6064bc2d9f82d08fd99650c5f59c8952f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alkaline Phosphatase - genetics</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Benzamides - administration & dosage</topic><topic>Benzamides - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Bone Regeneration - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>DEAD-box RNA Helicases - metabolism</topic><topic>DHX36</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Knockdown Techniques</topic><topic>HISTONE DEACETYLASE</topic><topic>Histone Deacetylase Inhibitors - administration & dosage</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylases - metabolism</topic><topic>Humans</topic><topic>Isoenzymes - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>MS‐275</topic><topic>OSTEOBLAST</topic><topic>Osteogenesis - drug effects</topic><topic>Protein Binding - drug effects</topic><topic>Pyridines - administration & dosage</topic><topic>Pyridines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Response Elements - genetics</topic><topic>Skeleton and joints</topic><topic>TISSUE‐NONSPECIFIC ALKALINE PHOSPHATASE (TNAP)</topic><topic>Transcription, Genetic - drug effects</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ha‐Neui</creatorcontrib><creatorcontrib>Lee, Jong‐Ho</creatorcontrib><creatorcontrib>Bae, Suk‐Chul</creatorcontrib><creatorcontrib>Ryoo, Hyun‐Mo</creatorcontrib><creatorcontrib>Kim, Hong‐Hee</creatorcontrib><creatorcontrib>Ha, Hyunil</creatorcontrib><creatorcontrib>Lee, Zang Hee</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Journal of bone and mineral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ha‐Neui</au><au>Lee, Jong‐Ho</au><au>Bae, Suk‐Chul</au><au>Ryoo, Hyun‐Mo</au><au>Kim, Hong‐Hee</au><au>Ha, Hyunil</au><au>Lee, Zang Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone deacetylase inhibitor MS‐275 stimulates bone formation in part by enhancing Dhx36‐mediated TNAP transcription</atitle><jtitle>Journal of bone and mineral research</jtitle><addtitle>J Bone Miner Res</addtitle><date>2011-09</date><risdate>2011</risdate><volume>26</volume><issue>9</issue><spage>2161</spage><epage>2173</epage><pages>2161-2173</pages><issn>0884-0431</issn><eissn>1523-4681</eissn><coden>JBMREJ</coden><abstract>Histone deacetylases (HDACs) deacetylate both histones and nonhistone proteins and play a key role in the regulation of physiologic and aberrant gene expression. Inhibition of HDACs has emerged as a promising therapeutic target for cancer and neurologic diseases. In this study we investigated the osteogenic effect and mechanism of action of MS‐275, a class I HDAC inhibitor with preference for HDAC1. Both local and systemic administration of MS‐275 stimulated bone regeneration in animal models. MS‐275 stimulated mRNA expression and activity of the early osteogenic marker tissue‐nonspecific alkaline phosphatase (TNAP) in bone tissue and osteogenic cells. By using a series of TNAP promoter deletion constructs and a DNA affinity precipitation assay, we identified DExH‐box helicase Dhx36 as a factor that binds to the MS‐275 response element in the TNAP promoter. We also found that Dhx36 binding to the MS‐275 response element is crucial for MS‐275 induction of TNAP transcription. Dhx36 physically interacted with a subset of HDACs (HDAC1 and ‐4) whose protein levels were downregulated by MS‐275, and forced expression of these HDACs blunted the stimulatory effects of MS‐275 by a deacetylase activity–independent mechanism(s). Taken together, the results of our study show that MS‐275 induces TNAP transcription by decreasing the interaction of HDAC1/4 with Dhx36, which can at least in part contribute to the bone anabolic effects of MS‐275. © 2011 American Society for Bone and Mineral Research</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21590736</pmid><doi>10.1002/jbmr.426</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-0431 |
ispartof | Journal of bone and mineral research, 2011-09, Vol.26 (9), p.2161-2173 |
issn | 0884-0431 1523-4681 |
language | eng |
recordid | cdi_proquest_miscellaneous_893284814 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Alkaline Phosphatase - genetics Alkaline Phosphatase - metabolism Animals Base Sequence Benzamides - administration & dosage Benzamides - pharmacology Biological and medical sciences Bone Regeneration - drug effects Cell Differentiation - drug effects Cell Line DEAD-box RNA Helicases - metabolism DHX36 Fundamental and applied biological sciences. Psychology Gene Knockdown Techniques HISTONE DEACETYLASE Histone Deacetylase Inhibitors - administration & dosage Histone Deacetylase Inhibitors - pharmacology Histone Deacetylases - metabolism Humans Isoenzymes - metabolism Male Mice Molecular Sequence Data MS‐275 OSTEOBLAST Osteogenesis - drug effects Protein Binding - drug effects Pyridines - administration & dosage Pyridines - pharmacology Rats Rats, Sprague-Dawley Response Elements - genetics Skeleton and joints TISSUE‐NONSPECIFIC ALKALINE PHOSPHATASE (TNAP) Transcription, Genetic - drug effects Vertebrates: osteoarticular system, musculoskeletal system |
title | Histone deacetylase inhibitor MS‐275 stimulates bone formation in part by enhancing Dhx36‐mediated TNAP transcription |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20deacetylase%20inhibitor%20MS%E2%80%90275%20stimulates%20bone%20formation%20in%20part%20by%20enhancing%20Dhx36%E2%80%90mediated%20TNAP%20transcription&rft.jtitle=Journal%20of%20bone%20and%20mineral%20research&rft.au=Kim,%20Ha%E2%80%90Neui&rft.date=2011-09&rft.volume=26&rft.issue=9&rft.spage=2161&rft.epage=2173&rft.pages=2161-2173&rft.issn=0884-0431&rft.eissn=1523-4681&rft.coden=JBMREJ&rft_id=info:doi/10.1002/jbmr.426&rft_dat=%3Cproquest_cross%3E893284814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866529638&rft_id=info:pmid/21590736&rfr_iscdi=true |