Pyruvate dehydrogenase inhibition by the inflammatory cytokine TNFα contributes to the pathogenesis of pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation and suppressed apoptosis of pulmonary artery smooth muscle cells (PASMC). This apoptosis resistance is characterized by PASMC mitochondrial hyperpolarization [in part, due to decreased pyru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular medicine (Berlin, Germany) Germany), 2011-08, Vol.89 (8), p.771-783
Hauptverfasser: Sutendra, Gopinath, Dromparis, Peter, Bonnet, Sébastien, Haromy, Alois, McMurtry, Michael S., Bleackley, R. Chris, Michelakis, Evangelos D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation and suppressed apoptosis of pulmonary artery smooth muscle cells (PASMC). This apoptosis resistance is characterized by PASMC mitochondrial hyperpolarization [in part, due to decreased pyruvate dehydrogenase (PDH) activity], decreased mitochondrial reactive oxygen species (mROS), downregulation of Kv1.5, increased [Ca ++ ] i , and activation of the transcription factor nuclear factor of activated T cells (NFAT). Inflammatory cells are present within and around the remodeled arteries and patients with PAH have elevated levels of inflammatory cytokines, including tumor necrosis factor-α (TNFα). We hypothesized that the inflammatory cytokine TNFα inhibits PASMC PDH activity, inducing a PAH phenotype in normal PASMC. We exposed normal human PASMC to recombinant human TNFα and measured PDH activity. In TNFα-treated cells, PDH activity was significantly decreased. Similar to exogenous TNFα, endogenous TNFα secreted from activated human CD8 + T cells, but not quiescent T cells, caused mitochondrial hyperpolarization, decreased mROS, decreased K + current, increased [Ca ++ ] i , and activated NFAT in normal human PASMC. A TNFα antibody completely prevented, while recombinant TNFα mimicked the T cell-induced effects. In vivo, the TNFα antagonist etanercept prevented and reversed monocrotaline (MCT)-induced PAH. In a separate model, T cell deficient rats developed less severe MCT-induced PAH compared to their controls. We show that TNFα can inhibit PASMC PDH activity and induce a PAH phenotype. Our work supports the use of anti-inflammatory therapies for PAH.
ISSN:0946-2716
1432-1440
DOI:10.1007/s00109-011-0762-2