Antimicrobial Activity and Cytotoxic Effects of Magnolia dealbata and its Active Compounds

Multi-drug resistance is of great concern for public health worldwide and necessitates the search for new antimicrobials from sources such as plants. Several Magnolia (Magnoliaceae) species have been reported to exert antimicrobial effects on sensitive and multidrug-resistant microorganisms. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural product communications 2011-08, Vol.6 (8), p.1121-1124
Hauptverfasser: Jacobo-Salcedo, Maria del Rosario, Gonzalez-Espindola, Luis Angel, Alonso-Castro, Angel Josabad, Gonzalez-Martinez, Marisela del Rocio, Domínguez, Fabiola, Garcia-Carranca, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-drug resistance is of great concern for public health worldwide and necessitates the search for new antimicrobials from sources such as plants. Several Magnolia (Magnoliaceae) species have been reported to exert antimicrobial effects on sensitive and multidrug-resistant microorganisms. However, the antimicrobial properties of Magnolia dealbata have not been experimentally evaluated. The antimicrobial effects of an ethanol extract of Magnolia dealbata seeds (MDE) and its active compounds honokiol (HK) and magnolol (MG) were tested against the phytopathogen Clavibacter michiganensis subsp. michiganensis and several human multi-drug resistant pathogens using the disk-diffusion assay. The effects of MDE and its active compounds on the viability of human peripheral blood mononuclear cells (PBMC) were evaluated using MTT assay. MDE and its active compounds had antimicrobial activity (inhibition zone > 10 mm) against C. michiganensis, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter lwoffii, Candida albicans, Candida tropicalis and Trichosporon belgeii. The results suggest that M. dealbata and its active compounds have selective antimicrobial effects against drug-resistant fungal and Gram (-) bacteria and exert minimal toxic effects on human PMBC.
ISSN:1934-578X
1555-9475
DOI:10.1177/1934578X1100600818