Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments
Bacteriochlorins, which are tetrapyrrole macrocycles with two reduced pyrrole rings, are Nature’s near-infrared (NIR) absorbers (700–900 nm). The strong absorption in the NIR region renders bacteriochlorins excellent candidates for a variety of applications including solar light harvesting, flow cyt...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2011-09, Vol.115 (37), p.10801-10816 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10816 |
---|---|
container_issue | 37 |
container_start_page | 10801 |
container_title | The journal of physical chemistry. B |
container_volume | 115 |
creator | Yang, Eunkyung Kirmaier, Christine Krayer, Michael Taniguchi, Masahiko Kim, Han-Je Diers, James R Bocian, David F Lindsey, Jonathan S Holten, Dewey |
description | Bacteriochlorins, which are tetrapyrrole macrocycles with two reduced pyrrole rings, are Nature’s near-infrared (NIR) absorbers (700–900 nm). The strong absorption in the NIR region renders bacteriochlorins excellent candidates for a variety of applications including solar light harvesting, flow cytometry, molecular imaging, and photodynamic therapy. Natural bacteriochlorins are inherently unstable due to oxidative conversion to the chlorin (one reduced pyrrole ring) or the porphyrin. The natural pigments are also only modestly amenable to synthetic manipulation, owing to a nearly full complement of substituents on the macrocycle. Recently, a new synthetic methodology has afforded access to stable synthetic bacteriochlorins wherein a wide variety of substituents can be appended to the macrocycle at preselected locations. Herein, the spectroscopic and photophysical properties of 33 synthetic bacteriochlorins are investigated. The NIR absorption bands of the chromophores range from ∼700 to ∼820 nm; the lifetimes of the lowest excited singlet state range from ∼2 to ∼6 ns; the fluorescence quantum yields range from ∼0.05 to ∼0.25; and the yield of the lowest triplet excited state is ∼0.5. The spectroscopic/photophysical studies of the bacteriochlorins are accompanied by density functional theory (DFT) calculations that probe the characteristics of the frontier molecular orbitals. The DFT calculations indicate that the impact of substituents on the spectral properties of the molecules derives primarily from effects on the lowest unoccupied molecular orbital. Collectively, the studies show how the palette of synthetic bacteriochlorins extends the properties of the native photosynthetic pigments (bacteriochlorophylls). The studies have also elucidated design principles for tuning the spectral and photophysical characteristics as required for a wide variety of photochemical applications. |
doi_str_mv | 10.1021/jp205258s |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_890673127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753473146</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-2a081e45d7d94ce9892e878b7c0a6c492783d235597274df6e70c0bb43d94ee03</originalsourceid><addsrcrecordid>eNqN0d1qHCEYBmApDc3vQW-geFKaQjZVR0enZ0nY_EBIF5IeD47zbdZlVifqhOyl9G7rdjd7VEIQ8RMeXsQXoc-UnFLC6I95z4hgQsUPaI8KRkZ5y4-buaSk3EX7Mc4JYYKp8hPaZVRJQbjcQ38mM598P1tGa3SHJ8H3EJKFiLVr8bgDk4J31uD7FAaThgDYT_NFNx2c4IfBrQZ8v3RpBimzc20SBOvNrPPBuvgTj18SuNa6R5wJvgS9ComrlDud7DPgfy-I24SJfVyAS_EQ7Ux1F-Focx6g35fjh4vr0e2vq5uLs9uR5rxMI6aJosBFK9uKG6hUxUBJ1UhDdGl4xaQqWlYIUUkmeTstQRJDmoYX2QOQ4gB9W-f2wT8NEFO9sNFA12kHfoi1qkgpC8pklsdvSiqFYjwv9R5a8JzKy0y_r6kJPsYA07oPdqHDsqakXtVbb-vN9ssmdmgW0G7la58ZfF0DbWI990Nw-ev-E_QXDCmuCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753473146</pqid></control><display><type>article</type><title>Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments</title><source>MEDLINE</source><source>ACS Publications</source><creator>Yang, Eunkyung ; Kirmaier, Christine ; Krayer, Michael ; Taniguchi, Masahiko ; Kim, Han-Je ; Diers, James R ; Bocian, David F ; Lindsey, Jonathan S ; Holten, Dewey</creator><creatorcontrib>Yang, Eunkyung ; Kirmaier, Christine ; Krayer, Michael ; Taniguchi, Masahiko ; Kim, Han-Je ; Diers, James R ; Bocian, David F ; Lindsey, Jonathan S ; Holten, Dewey</creatorcontrib><description>Bacteriochlorins, which are tetrapyrrole macrocycles with two reduced pyrrole rings, are Nature’s near-infrared (NIR) absorbers (700–900 nm). The strong absorption in the NIR region renders bacteriochlorins excellent candidates for a variety of applications including solar light harvesting, flow cytometry, molecular imaging, and photodynamic therapy. Natural bacteriochlorins are inherently unstable due to oxidative conversion to the chlorin (one reduced pyrrole ring) or the porphyrin. The natural pigments are also only modestly amenable to synthetic manipulation, owing to a nearly full complement of substituents on the macrocycle. Recently, a new synthetic methodology has afforded access to stable synthetic bacteriochlorins wherein a wide variety of substituents can be appended to the macrocycle at preselected locations. Herein, the spectroscopic and photophysical properties of 33 synthetic bacteriochlorins are investigated. The NIR absorption bands of the chromophores range from ∼700 to ∼820 nm; the lifetimes of the lowest excited singlet state range from ∼2 to ∼6 ns; the fluorescence quantum yields range from ∼0.05 to ∼0.25; and the yield of the lowest triplet excited state is ∼0.5. The spectroscopic/photophysical studies of the bacteriochlorins are accompanied by density functional theory (DFT) calculations that probe the characteristics of the frontier molecular orbitals. The DFT calculations indicate that the impact of substituents on the spectral properties of the molecules derives primarily from effects on the lowest unoccupied molecular orbital. Collectively, the studies show how the palette of synthetic bacteriochlorins extends the properties of the native photosynthetic pigments (bacteriochlorophylls). The studies have also elucidated design principles for tuning the spectral and photophysical characteristics as required for a wide variety of photochemical applications.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp205258s</identifier><identifier>PMID: 21875047</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Macromolecules, Soft Matter ; Bacteria ; Bacteriochlorophylls - chemistry ; Electrons ; Excitation ; Flow cytometry ; Mathematical analysis ; Molecular orbitals ; Pheophytins - chemistry ; Photosynthesis ; Pigments ; Porphyrins - chemical synthesis ; Porphyrins - chemistry ; Pyrroles ; Quantum Theory ; Spectra ; Spectroscopy ; Spectroscopy, Near-Infrared</subject><ispartof>The journal of physical chemistry. B, 2011-09, Vol.115 (37), p.10801-10816</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-2a081e45d7d94ce9892e878b7c0a6c492783d235597274df6e70c0bb43d94ee03</citedby><cites>FETCH-LOGICAL-a446t-2a081e45d7d94ce9892e878b7c0a6c492783d235597274df6e70c0bb43d94ee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp205258s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp205258s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21875047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Eunkyung</creatorcontrib><creatorcontrib>Kirmaier, Christine</creatorcontrib><creatorcontrib>Krayer, Michael</creatorcontrib><creatorcontrib>Taniguchi, Masahiko</creatorcontrib><creatorcontrib>Kim, Han-Je</creatorcontrib><creatorcontrib>Diers, James R</creatorcontrib><creatorcontrib>Bocian, David F</creatorcontrib><creatorcontrib>Lindsey, Jonathan S</creatorcontrib><creatorcontrib>Holten, Dewey</creatorcontrib><title>Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Bacteriochlorins, which are tetrapyrrole macrocycles with two reduced pyrrole rings, are Nature’s near-infrared (NIR) absorbers (700–900 nm). The strong absorption in the NIR region renders bacteriochlorins excellent candidates for a variety of applications including solar light harvesting, flow cytometry, molecular imaging, and photodynamic therapy. Natural bacteriochlorins are inherently unstable due to oxidative conversion to the chlorin (one reduced pyrrole ring) or the porphyrin. The natural pigments are also only modestly amenable to synthetic manipulation, owing to a nearly full complement of substituents on the macrocycle. Recently, a new synthetic methodology has afforded access to stable synthetic bacteriochlorins wherein a wide variety of substituents can be appended to the macrocycle at preselected locations. Herein, the spectroscopic and photophysical properties of 33 synthetic bacteriochlorins are investigated. The NIR absorption bands of the chromophores range from ∼700 to ∼820 nm; the lifetimes of the lowest excited singlet state range from ∼2 to ∼6 ns; the fluorescence quantum yields range from ∼0.05 to ∼0.25; and the yield of the lowest triplet excited state is ∼0.5. The spectroscopic/photophysical studies of the bacteriochlorins are accompanied by density functional theory (DFT) calculations that probe the characteristics of the frontier molecular orbitals. The DFT calculations indicate that the impact of substituents on the spectral properties of the molecules derives primarily from effects on the lowest unoccupied molecular orbital. Collectively, the studies show how the palette of synthetic bacteriochlorins extends the properties of the native photosynthetic pigments (bacteriochlorophylls). The studies have also elucidated design principles for tuning the spectral and photophysical characteristics as required for a wide variety of photochemical applications.</description><subject>B: Macromolecules, Soft Matter</subject><subject>Bacteria</subject><subject>Bacteriochlorophylls - chemistry</subject><subject>Electrons</subject><subject>Excitation</subject><subject>Flow cytometry</subject><subject>Mathematical analysis</subject><subject>Molecular orbitals</subject><subject>Pheophytins - chemistry</subject><subject>Photosynthesis</subject><subject>Pigments</subject><subject>Porphyrins - chemical synthesis</subject><subject>Porphyrins - chemistry</subject><subject>Pyrroles</subject><subject>Quantum Theory</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Near-Infrared</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0d1qHCEYBmApDc3vQW-geFKaQjZVR0enZ0nY_EBIF5IeD47zbdZlVifqhOyl9G7rdjd7VEIQ8RMeXsQXoc-UnFLC6I95z4hgQsUPaI8KRkZ5y4-buaSk3EX7Mc4JYYKp8hPaZVRJQbjcQ38mM598P1tGa3SHJ8H3EJKFiLVr8bgDk4J31uD7FAaThgDYT_NFNx2c4IfBrQZ8v3RpBimzc20SBOvNrPPBuvgTj18SuNa6R5wJvgS9ComrlDud7DPgfy-I24SJfVyAS_EQ7Ux1F-Focx6g35fjh4vr0e2vq5uLs9uR5rxMI6aJosBFK9uKG6hUxUBJ1UhDdGl4xaQqWlYIUUkmeTstQRJDmoYX2QOQ4gB9W-f2wT8NEFO9sNFA12kHfoi1qkgpC8pklsdvSiqFYjwv9R5a8JzKy0y_r6kJPsYA07oPdqHDsqakXtVbb-vN9ssmdmgW0G7la58ZfF0DbWI990Nw-ev-E_QXDCmuCg</recordid><startdate>20110922</startdate><enddate>20110922</enddate><creator>Yang, Eunkyung</creator><creator>Kirmaier, Christine</creator><creator>Krayer, Michael</creator><creator>Taniguchi, Masahiko</creator><creator>Kim, Han-Je</creator><creator>Diers, James R</creator><creator>Bocian, David F</creator><creator>Lindsey, Jonathan S</creator><creator>Holten, Dewey</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20110922</creationdate><title>Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments</title><author>Yang, Eunkyung ; Kirmaier, Christine ; Krayer, Michael ; Taniguchi, Masahiko ; Kim, Han-Je ; Diers, James R ; Bocian, David F ; Lindsey, Jonathan S ; Holten, Dewey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-2a081e45d7d94ce9892e878b7c0a6c492783d235597274df6e70c0bb43d94ee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>B: Macromolecules, Soft Matter</topic><topic>Bacteria</topic><topic>Bacteriochlorophylls - chemistry</topic><topic>Electrons</topic><topic>Excitation</topic><topic>Flow cytometry</topic><topic>Mathematical analysis</topic><topic>Molecular orbitals</topic><topic>Pheophytins - chemistry</topic><topic>Photosynthesis</topic><topic>Pigments</topic><topic>Porphyrins - chemical synthesis</topic><topic>Porphyrins - chemistry</topic><topic>Pyrroles</topic><topic>Quantum Theory</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Near-Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Eunkyung</creatorcontrib><creatorcontrib>Kirmaier, Christine</creatorcontrib><creatorcontrib>Krayer, Michael</creatorcontrib><creatorcontrib>Taniguchi, Masahiko</creatorcontrib><creatorcontrib>Kim, Han-Je</creatorcontrib><creatorcontrib>Diers, James R</creatorcontrib><creatorcontrib>Bocian, David F</creatorcontrib><creatorcontrib>Lindsey, Jonathan S</creatorcontrib><creatorcontrib>Holten, Dewey</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Eunkyung</au><au>Kirmaier, Christine</au><au>Krayer, Michael</au><au>Taniguchi, Masahiko</au><au>Kim, Han-Je</au><au>Diers, James R</au><au>Bocian, David F</au><au>Lindsey, Jonathan S</au><au>Holten, Dewey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2011-09-22</date><risdate>2011</risdate><volume>115</volume><issue>37</issue><spage>10801</spage><epage>10816</epage><pages>10801-10816</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Bacteriochlorins, which are tetrapyrrole macrocycles with two reduced pyrrole rings, are Nature’s near-infrared (NIR) absorbers (700–900 nm). The strong absorption in the NIR region renders bacteriochlorins excellent candidates for a variety of applications including solar light harvesting, flow cytometry, molecular imaging, and photodynamic therapy. Natural bacteriochlorins are inherently unstable due to oxidative conversion to the chlorin (one reduced pyrrole ring) or the porphyrin. The natural pigments are also only modestly amenable to synthetic manipulation, owing to a nearly full complement of substituents on the macrocycle. Recently, a new synthetic methodology has afforded access to stable synthetic bacteriochlorins wherein a wide variety of substituents can be appended to the macrocycle at preselected locations. Herein, the spectroscopic and photophysical properties of 33 synthetic bacteriochlorins are investigated. The NIR absorption bands of the chromophores range from ∼700 to ∼820 nm; the lifetimes of the lowest excited singlet state range from ∼2 to ∼6 ns; the fluorescence quantum yields range from ∼0.05 to ∼0.25; and the yield of the lowest triplet excited state is ∼0.5. The spectroscopic/photophysical studies of the bacteriochlorins are accompanied by density functional theory (DFT) calculations that probe the characteristics of the frontier molecular orbitals. The DFT calculations indicate that the impact of substituents on the spectral properties of the molecules derives primarily from effects on the lowest unoccupied molecular orbital. Collectively, the studies show how the palette of synthetic bacteriochlorins extends the properties of the native photosynthetic pigments (bacteriochlorophylls). The studies have also elucidated design principles for tuning the spectral and photophysical characteristics as required for a wide variety of photochemical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21875047</pmid><doi>10.1021/jp205258s</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2011-09, Vol.115 (37), p.10801-10816 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_890673127 |
source | MEDLINE; ACS Publications |
subjects | B: Macromolecules, Soft Matter Bacteria Bacteriochlorophylls - chemistry Electrons Excitation Flow cytometry Mathematical analysis Molecular orbitals Pheophytins - chemistry Photosynthesis Pigments Porphyrins - chemical synthesis Porphyrins - chemistry Pyrroles Quantum Theory Spectra Spectroscopy Spectroscopy, Near-Infrared |
title | Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photophysical%20Properties%20and%20Electronic%20Structure%20of%20Stable,%20Tunable%20Synthetic%20Bacteriochlorins:%20Extending%20the%20Features%20of%20Native%20Photosynthetic%20Pigments&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Yang,%20Eunkyung&rft.date=2011-09-22&rft.volume=115&rft.issue=37&rft.spage=10801&rft.epage=10816&rft.pages=10801-10816&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp205258s&rft_dat=%3Cproquest_cross%3E1753473146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753473146&rft_id=info:pmid/21875047&rfr_iscdi=true |