Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range

In a single well-mixed population, equally abundant neutral alleles are equally likely to persist. However, in spatially complex populations structured by an asymmetric dispersal mechanism, such as a coastal population where larvae are predominantly moved downstream by currents, the eventual frequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (37), p.15288-15293
Hauptverfasser: Pringle, James M, Blakeslee, April M. H, Byers, James E, Roman, Joe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15293
container_issue 37
container_start_page 15288
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Pringle, James M
Blakeslee, April M. H
Byers, James E
Roman, Joe
description In a single well-mixed population, equally abundant neutral alleles are equally likely to persist. However, in spatially complex populations structured by an asymmetric dispersal mechanism, such as a coastal population where larvae are predominantly moved downstream by currents, the eventual frequency of neutral haplotypes will depend on their initial spatial location. In our study of the progression of two spatially separate, genetically distinct introductions of the European green crab (Carcinus maenas) along the coast of eastern North America, we captured this process in action. We documented the shift of the genetic cline in this species over 8 y, and here we detail how the upstream haplotypes are beginning to dominate the system. This quantification of an evolving genetic boundary in a coastal system demonstrates that novel genetic alleles or haplotypes that arise or are introduced into upstream retention zones (regions whose export of larvae is not balanced by import from elsewhere) will increase in frequency in the entire system. This phenomenon should be widespread when there is asymmetrical dispersal, in the oceans or on land, suggesting that the upstream edge of a species’ range can influence genetic diversity throughout its distribution. Efforts to protect the upstream edge of an asymmetrically dispersing species’ range are vital to conserving genetic diversity in the species.
doi_str_mv 10.1073/pnas.1100473108
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_890031360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352085</jstor_id><sourcerecordid>41352085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-7e7cef2d28407b04d25f7423f960a2ff5d8bbc12c9c41dcfbf34f9d761af26b33</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhzAmwuMAl7fgjsX1Bqiq-pEocoGfLcexsVkkcbAfUG3-Dv8cvwdEuW-AAJ0ueZx7NjN6ieIzhDAOn5_Ok4xnGAIxTDOJOscEgcVkzCXeLDQDhpWCEnRQPYtwBgKwE3C9OCBa8xqTeFMNFvBlHm0JvUNvH2YaoB6SHwX-NSE9omWMKVo8o2K73E0oeGT-l4Ac0-3kZdFp_M7OYtASL0jb4pdv6JSGNss70Nv749h0FPXX2YXHP6SHaR4f3tLh-8_rT5bvy6sPb95cXV6WpCU4lt9xYR1oiGPAGWEsqxxmhTtagiXNVK5rGYGKkYbg1rnGUOdnmjbQjdUPpafFq752XZrStsXlgPag59KMON8rrXv1Zmfqt6vwXRTFnlVwFLw6C4D8vNiY19tHYYdCT9UtUEjjmhOWZ_kcKCUAxrSGTL_9JEinqimQvzujzv9CdX8KUT7b6KipB1hk630Mm-BiDdcf9MKg1HGoNh7oNR-54-vtZjvyvNGQAHYC181YnFOUKV0Ssjid7ZBeTD0eGYVoREFWuP9vXnfZKd6GP6vojAcxy-ARIJuhPTXLWeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890539096</pqid></control><display><type>article</type><title>Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pringle, James M ; Blakeslee, April M. H ; Byers, James E ; Roman, Joe</creator><creatorcontrib>Pringle, James M ; Blakeslee, April M. H ; Byers, James E ; Roman, Joe</creatorcontrib><description>In a single well-mixed population, equally abundant neutral alleles are equally likely to persist. However, in spatially complex populations structured by an asymmetric dispersal mechanism, such as a coastal population where larvae are predominantly moved downstream by currents, the eventual frequency of neutral haplotypes will depend on their initial spatial location. In our study of the progression of two spatially separate, genetically distinct introductions of the European green crab (Carcinus maenas) along the coast of eastern North America, we captured this process in action. We documented the shift of the genetic cline in this species over 8 y, and here we detail how the upstream haplotypes are beginning to dominate the system. This quantification of an evolving genetic boundary in a coastal system demonstrates that novel genetic alleles or haplotypes that arise or are introduced into upstream retention zones (regions whose export of larvae is not balanced by import from elsewhere) will increase in frequency in the entire system. This phenomenon should be widespread when there is asymmetrical dispersal, in the oceans or on land, suggesting that the upstream edge of a species’ range can influence genetic diversity throughout its distribution. Efforts to protect the upstream edge of an asymmetrically dispersing species’ range are vital to conserving genetic diversity in the species.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1100473108</identifier><identifier>PMID: 21876126</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Animal Migration - physiology ; Animals ; Biological Sciences ; Brachyura - genetics ; Brachyura - physiology ; Canada ; Carcinus maenas ; Clines ; Crabs ; Crustaceans ; Evolution ; Evolutionary genetics ; Gene Frequency - genetics ; Genetic diversity ; genetic variation ; Geography ; Haplotypes ; Haplotypes - genetics ; Invasive species ; Larva - physiology ; Larvae ; Models, Genetic ; New England ; Nonnative species ; North America ; oceans ; Parametric models ; Physical Sciences ; Population Dynamics ; Population genetics ; population structure ; species diversity ; Species Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15288-15293</ispartof><rights>Copyright National Academy of Sciences Sep 13, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-7e7cef2d28407b04d25f7423f960a2ff5d8bbc12c9c41dcfbf34f9d761af26b33</citedby><cites>FETCH-LOGICAL-c621t-7e7cef2d28407b04d25f7423f960a2ff5d8bbc12c9c41dcfbf34f9d761af26b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352085$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352085$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21876126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pringle, James M</creatorcontrib><creatorcontrib>Blakeslee, April M. H</creatorcontrib><creatorcontrib>Byers, James E</creatorcontrib><creatorcontrib>Roman, Joe</creatorcontrib><title>Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In a single well-mixed population, equally abundant neutral alleles are equally likely to persist. However, in spatially complex populations structured by an asymmetric dispersal mechanism, such as a coastal population where larvae are predominantly moved downstream by currents, the eventual frequency of neutral haplotypes will depend on their initial spatial location. In our study of the progression of two spatially separate, genetically distinct introductions of the European green crab (Carcinus maenas) along the coast of eastern North America, we captured this process in action. We documented the shift of the genetic cline in this species over 8 y, and here we detail how the upstream haplotypes are beginning to dominate the system. This quantification of an evolving genetic boundary in a coastal system demonstrates that novel genetic alleles or haplotypes that arise or are introduced into upstream retention zones (regions whose export of larvae is not balanced by import from elsewhere) will increase in frequency in the entire system. This phenomenon should be widespread when there is asymmetrical dispersal, in the oceans or on land, suggesting that the upstream edge of a species’ range can influence genetic diversity throughout its distribution. Efforts to protect the upstream edge of an asymmetrically dispersing species’ range are vital to conserving genetic diversity in the species.</description><subject>Alleles</subject><subject>Animal Migration - physiology</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Brachyura - genetics</subject><subject>Brachyura - physiology</subject><subject>Canada</subject><subject>Carcinus maenas</subject><subject>Clines</subject><subject>Crabs</subject><subject>Crustaceans</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Gene Frequency - genetics</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>Geography</subject><subject>Haplotypes</subject><subject>Haplotypes - genetics</subject><subject>Invasive species</subject><subject>Larva - physiology</subject><subject>Larvae</subject><subject>Models, Genetic</subject><subject>New England</subject><subject>Nonnative species</subject><subject>North America</subject><subject>oceans</subject><subject>Parametric models</subject><subject>Physical Sciences</subject><subject>Population Dynamics</subject><subject>Population genetics</subject><subject>population structure</subject><subject>species diversity</subject><subject>Species Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEokvhzAmwuMAl7fgjsX1Bqiq-pEocoGfLcexsVkkcbAfUG3-Dv8cvwdEuW-AAJ0ueZx7NjN6ieIzhDAOn5_Ok4xnGAIxTDOJOscEgcVkzCXeLDQDhpWCEnRQPYtwBgKwE3C9OCBa8xqTeFMNFvBlHm0JvUNvH2YaoB6SHwX-NSE9omWMKVo8o2K73E0oeGT-l4Ac0-3kZdFp_M7OYtASL0jb4pdv6JSGNss70Nv749h0FPXX2YXHP6SHaR4f3tLh-8_rT5bvy6sPb95cXV6WpCU4lt9xYR1oiGPAGWEsqxxmhTtagiXNVK5rGYGKkYbg1rnGUOdnmjbQjdUPpafFq752XZrStsXlgPag59KMON8rrXv1Zmfqt6vwXRTFnlVwFLw6C4D8vNiY19tHYYdCT9UtUEjjmhOWZ_kcKCUAxrSGTL_9JEinqimQvzujzv9CdX8KUT7b6KipB1hk630Mm-BiDdcf9MKg1HGoNh7oNR-54-vtZjvyvNGQAHYC181YnFOUKV0Ssjid7ZBeTD0eGYVoREFWuP9vXnfZKd6GP6vojAcxy-ARIJuhPTXLWeg</recordid><startdate>20110913</startdate><enddate>20110913</enddate><creator>Pringle, James M</creator><creator>Blakeslee, April M. H</creator><creator>Byers, James E</creator><creator>Roman, Joe</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20110913</creationdate><title>Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range</title><author>Pringle, James M ; Blakeslee, April M. H ; Byers, James E ; Roman, Joe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-7e7cef2d28407b04d25f7423f960a2ff5d8bbc12c9c41dcfbf34f9d761af26b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alleles</topic><topic>Animal Migration - physiology</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Brachyura - genetics</topic><topic>Brachyura - physiology</topic><topic>Canada</topic><topic>Carcinus maenas</topic><topic>Clines</topic><topic>Crabs</topic><topic>Crustaceans</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Gene Frequency - genetics</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>Geography</topic><topic>Haplotypes</topic><topic>Haplotypes - genetics</topic><topic>Invasive species</topic><topic>Larva - physiology</topic><topic>Larvae</topic><topic>Models, Genetic</topic><topic>New England</topic><topic>Nonnative species</topic><topic>North America</topic><topic>oceans</topic><topic>Parametric models</topic><topic>Physical Sciences</topic><topic>Population Dynamics</topic><topic>Population genetics</topic><topic>population structure</topic><topic>species diversity</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pringle, James M</creatorcontrib><creatorcontrib>Blakeslee, April M. H</creatorcontrib><creatorcontrib>Byers, James E</creatorcontrib><creatorcontrib>Roman, Joe</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pringle, James M</au><au>Blakeslee, April M. H</au><au>Byers, James E</au><au>Roman, Joe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-09-13</date><risdate>2011</risdate><volume>108</volume><issue>37</issue><spage>15288</spage><epage>15293</epage><pages>15288-15293</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In a single well-mixed population, equally abundant neutral alleles are equally likely to persist. However, in spatially complex populations structured by an asymmetric dispersal mechanism, such as a coastal population where larvae are predominantly moved downstream by currents, the eventual frequency of neutral haplotypes will depend on their initial spatial location. In our study of the progression of two spatially separate, genetically distinct introductions of the European green crab (Carcinus maenas) along the coast of eastern North America, we captured this process in action. We documented the shift of the genetic cline in this species over 8 y, and here we detail how the upstream haplotypes are beginning to dominate the system. This quantification of an evolving genetic boundary in a coastal system demonstrates that novel genetic alleles or haplotypes that arise or are introduced into upstream retention zones (regions whose export of larvae is not balanced by import from elsewhere) will increase in frequency in the entire system. This phenomenon should be widespread when there is asymmetrical dispersal, in the oceans or on land, suggesting that the upstream edge of a species’ range can influence genetic diversity throughout its distribution. Efforts to protect the upstream edge of an asymmetrically dispersing species’ range are vital to conserving genetic diversity in the species.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21876126</pmid><doi>10.1073/pnas.1100473108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15288-15293
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_890031360
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Animal Migration - physiology
Animals
Biological Sciences
Brachyura - genetics
Brachyura - physiology
Canada
Carcinus maenas
Clines
Crabs
Crustaceans
Evolution
Evolutionary genetics
Gene Frequency - genetics
Genetic diversity
genetic variation
Geography
Haplotypes
Haplotypes - genetics
Invasive species
Larva - physiology
Larvae
Models, Genetic
New England
Nonnative species
North America
oceans
Parametric models
Physical Sciences
Population Dynamics
Population genetics
population structure
species diversity
Species Specificity
title Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20dispersal%20allows%20an%20upstream%20region%20to%20control%20population%20structure%20throughout%20a%20species%E2%80%99%20range&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pringle,%20James%20M&rft.date=2011-09-13&rft.volume=108&rft.issue=37&rft.spage=15288&rft.epage=15293&rft.pages=15288-15293&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1100473108&rft_dat=%3Cjstor_proqu%3E41352085%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=890539096&rft_id=info:pmid/21876126&rft_jstor_id=41352085&rfr_iscdi=true