Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor

More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2011-09, Vol.11 (9), p.3734-3738
Hauptverfasser: Kim, Youngsang, Pietsch, Torsten, Erbe, Artur, Belzig, Wolfgang, Scheer, Elke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3738
container_issue 9
container_start_page 3734
container_title Nano letters
container_volume 11
creator Kim, Youngsang
Pietsch, Torsten
Erbe, Artur
Belzig, Wolfgang
Scheer, Elke
description More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10–3 conductance quanta as well as with high conductance values above ∼0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance.
doi_str_mv 10.1021/nl201777m
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_890031174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762050702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-b41b777f4049d4f70243a3e79f240b1cdb9c2f18560f2ca0f92c2477aad581fc3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgWgpDPwBlAUBQ-DsOHXMRBvxJRUh8TFHjmO3qVy72MkAv56glnZBSCfdDY_uTi9CxxguMRB8ZQ0BzBhb7KA-ThOIh5yT3c2c0R46CGEOADxJYR_1CM4g5Yz10c1Y2S9lVVU3s9qZ62gUjb0TVfwi7FRFr7WdGhXnM2GtMtGTM0q2Rvgod7ZqZeP8IdrTwgR1tO4D9H53-5Y_xJPn-8d8NIkFZVkTlxSX3YeaAuUV1QwITUSiGNeEQollVXJJNM7SIWgiBWhOJKGMCVGlGdYyGaCz1d6ldx-tCk2xqINUxgirXBuKjAMkGDPayfN_JWZDAil0L3T0YkWldyF4pYulrxfCfxYYip9oi020nT1Zr23Lhao28jfLDpyugQhSGO2FlXXYOpp2BXTrhAzF3LXedrn9cfAbSzyKrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762050702</pqid></control><display><type>article</type><title>Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kim, Youngsang ; Pietsch, Torsten ; Erbe, Artur ; Belzig, Wolfgang ; Scheer, Elke</creator><creatorcontrib>Kim, Youngsang ; Pietsch, Torsten ; Erbe, Artur ; Belzig, Wolfgang ; Scheer, Elke</creatorcontrib><description>More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10–3 conductance quanta as well as with high conductance values above ∼0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl201777m</identifier><identifier>PMID: 21805977</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Channels ; Coherence ; Conductance ; Conductors (devices) ; Coupling (molecular) ; Displacement ; Electric Conductivity ; Electrodes ; Electronics ; Electrons ; Exact sciences and technology ; Microscopy, Scanning Tunneling ; Models, Statistical ; Molecular Conformation ; Molecular electronics, nanoelectronics ; Nanostructure ; Nanotechnology - methods ; Organic Chemicals - chemistry ; Quantum Theory ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sulfhydryl Compounds - chemistry ; Temperature ; Transport</subject><ispartof>Nano letters, 2011-09, Vol.11 (9), p.3734-3738</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-b41b777f4049d4f70243a3e79f240b1cdb9c2f18560f2ca0f92c2477aad581fc3</citedby><cites>FETCH-LOGICAL-a478t-b41b777f4049d4f70243a3e79f240b1cdb9c2f18560f2ca0f92c2477aad581fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl201777m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl201777m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24524504$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21805977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Youngsang</creatorcontrib><creatorcontrib>Pietsch, Torsten</creatorcontrib><creatorcontrib>Erbe, Artur</creatorcontrib><creatorcontrib>Belzig, Wolfgang</creatorcontrib><creatorcontrib>Scheer, Elke</creatorcontrib><title>Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10–3 conductance quanta as well as with high conductance values above ∼0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Coherence</subject><subject>Conductance</subject><subject>Conductors (devices)</subject><subject>Coupling (molecular)</subject><subject>Displacement</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Microscopy, Scanning Tunneling</subject><subject>Models, Statistical</subject><subject>Molecular Conformation</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Organic Chemicals - chemistry</subject><subject>Quantum Theory</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Temperature</subject><subject>Transport</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90D1PwzAQBmALgWgpDPwBlAUBQ-DsOHXMRBvxJRUh8TFHjmO3qVy72MkAv56glnZBSCfdDY_uTi9CxxguMRB8ZQ0BzBhb7KA-ThOIh5yT3c2c0R46CGEOADxJYR_1CM4g5Yz10c1Y2S9lVVU3s9qZ62gUjb0TVfwi7FRFr7WdGhXnM2GtMtGTM0q2Rvgod7ZqZeP8IdrTwgR1tO4D9H53-5Y_xJPn-8d8NIkFZVkTlxSX3YeaAuUV1QwITUSiGNeEQollVXJJNM7SIWgiBWhOJKGMCVGlGdYyGaCz1d6ldx-tCk2xqINUxgirXBuKjAMkGDPayfN_JWZDAil0L3T0YkWldyF4pYulrxfCfxYYip9oi020nT1Zr23Lhao28jfLDpyugQhSGO2FlXXYOpp2BXTrhAzF3LXedrn9cfAbSzyKrA</recordid><startdate>20110914</startdate><enddate>20110914</enddate><creator>Kim, Youngsang</creator><creator>Pietsch, Torsten</creator><creator>Erbe, Artur</creator><creator>Belzig, Wolfgang</creator><creator>Scheer, Elke</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110914</creationdate><title>Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor</title><author>Kim, Youngsang ; Pietsch, Torsten ; Erbe, Artur ; Belzig, Wolfgang ; Scheer, Elke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-b41b777f4049d4f70243a3e79f240b1cdb9c2f18560f2ca0f92c2477aad581fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Coherence</topic><topic>Conductance</topic><topic>Conductors (devices)</topic><topic>Coupling (molecular)</topic><topic>Displacement</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Microscopy, Scanning Tunneling</topic><topic>Models, Statistical</topic><topic>Molecular Conformation</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Organic Chemicals - chemistry</topic><topic>Quantum Theory</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Temperature</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngsang</creatorcontrib><creatorcontrib>Pietsch, Torsten</creatorcontrib><creatorcontrib>Erbe, Artur</creatorcontrib><creatorcontrib>Belzig, Wolfgang</creatorcontrib><creatorcontrib>Scheer, Elke</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youngsang</au><au>Pietsch, Torsten</au><au>Erbe, Artur</au><au>Belzig, Wolfgang</au><au>Scheer, Elke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-09-14</date><risdate>2011</risdate><volume>11</volume><issue>9</issue><spage>3734</spage><epage>3738</epage><pages>3734-3738</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10–3 conductance quanta as well as with high conductance values above ∼0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21805977</pmid><doi>10.1021/nl201777m</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2011-09, Vol.11 (9), p.3734-3738
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_890031174
source ACS Publications; MEDLINE
subjects Applied sciences
Channels
Coherence
Conductance
Conductors (devices)
Coupling (molecular)
Displacement
Electric Conductivity
Electrodes
Electronics
Electrons
Exact sciences and technology
Microscopy, Scanning Tunneling
Models, Statistical
Molecular Conformation
Molecular electronics, nanoelectronics
Nanostructure
Nanotechnology - methods
Organic Chemicals - chemistry
Quantum Theory
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sulfhydryl Compounds - chemistry
Temperature
Transport
title Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benzenedithiol:%20A%20Broad-Range%20Single-Channel%20Molecular%20Conductor&rft.jtitle=Nano%20letters&rft.au=Kim,%20Youngsang&rft.date=2011-09-14&rft.volume=11&rft.issue=9&rft.spage=3734&rft.epage=3738&rft.pages=3734-3738&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl201777m&rft_dat=%3Cproquest_cross%3E1762050702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762050702&rft_id=info:pmid/21805977&rfr_iscdi=true