Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor
More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstr...
Gespeichert in:
Veröffentlicht in: | Nano letters 2011-09, Vol.11 (9), p.3734-3738 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3738 |
---|---|
container_issue | 9 |
container_start_page | 3734 |
container_title | Nano letters |
container_volume | 11 |
creator | Kim, Youngsang Pietsch, Torsten Erbe, Artur Belzig, Wolfgang Scheer, Elke |
description | More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10–3 conductance quanta as well as with high conductance values above ∼0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance. |
doi_str_mv | 10.1021/nl201777m |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_890031174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762050702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-b41b777f4049d4f70243a3e79f240b1cdb9c2f18560f2ca0f92c2477aad581fc3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgWgpDPwBlAUBQ-DsOHXMRBvxJRUh8TFHjmO3qVy72MkAv56glnZBSCfdDY_uTi9CxxguMRB8ZQ0BzBhb7KA-ThOIh5yT3c2c0R46CGEOADxJYR_1CM4g5Yz10c1Y2S9lVVU3s9qZ62gUjb0TVfwi7FRFr7WdGhXnM2GtMtGTM0q2Rvgod7ZqZeP8IdrTwgR1tO4D9H53-5Y_xJPn-8d8NIkFZVkTlxSX3YeaAuUV1QwITUSiGNeEQollVXJJNM7SIWgiBWhOJKGMCVGlGdYyGaCz1d6ldx-tCk2xqINUxgirXBuKjAMkGDPayfN_JWZDAil0L3T0YkWldyF4pYulrxfCfxYYip9oi020nT1Zr23Lhao28jfLDpyugQhSGO2FlXXYOpp2BXTrhAzF3LXedrn9cfAbSzyKrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762050702</pqid></control><display><type>article</type><title>Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kim, Youngsang ; Pietsch, Torsten ; Erbe, Artur ; Belzig, Wolfgang ; Scheer, Elke</creator><creatorcontrib>Kim, Youngsang ; Pietsch, Torsten ; Erbe, Artur ; Belzig, Wolfgang ; Scheer, Elke</creatorcontrib><description>More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10–3 conductance quanta as well as with high conductance values above ∼0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl201777m</identifier><identifier>PMID: 21805977</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Channels ; Coherence ; Conductance ; Conductors (devices) ; Coupling (molecular) ; Displacement ; Electric Conductivity ; Electrodes ; Electronics ; Electrons ; Exact sciences and technology ; Microscopy, Scanning Tunneling ; Models, Statistical ; Molecular Conformation ; Molecular electronics, nanoelectronics ; Nanostructure ; Nanotechnology - methods ; Organic Chemicals - chemistry ; Quantum Theory ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sulfhydryl Compounds - chemistry ; Temperature ; Transport</subject><ispartof>Nano letters, 2011-09, Vol.11 (9), p.3734-3738</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-b41b777f4049d4f70243a3e79f240b1cdb9c2f18560f2ca0f92c2477aad581fc3</citedby><cites>FETCH-LOGICAL-a478t-b41b777f4049d4f70243a3e79f240b1cdb9c2f18560f2ca0f92c2477aad581fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl201777m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl201777m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24524504$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21805977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Youngsang</creatorcontrib><creatorcontrib>Pietsch, Torsten</creatorcontrib><creatorcontrib>Erbe, Artur</creatorcontrib><creatorcontrib>Belzig, Wolfgang</creatorcontrib><creatorcontrib>Scheer, Elke</creatorcontrib><title>Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10–3 conductance quanta as well as with high conductance values above ∼0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Coherence</subject><subject>Conductance</subject><subject>Conductors (devices)</subject><subject>Coupling (molecular)</subject><subject>Displacement</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Microscopy, Scanning Tunneling</subject><subject>Models, Statistical</subject><subject>Molecular Conformation</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Organic Chemicals - chemistry</subject><subject>Quantum Theory</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Temperature</subject><subject>Transport</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90D1PwzAQBmALgWgpDPwBlAUBQ-DsOHXMRBvxJRUh8TFHjmO3qVy72MkAv56glnZBSCfdDY_uTi9CxxguMRB8ZQ0BzBhb7KA-ThOIh5yT3c2c0R46CGEOADxJYR_1CM4g5Yz10c1Y2S9lVVU3s9qZ62gUjb0TVfwi7FRFr7WdGhXnM2GtMtGTM0q2Rvgod7ZqZeP8IdrTwgR1tO4D9H53-5Y_xJPn-8d8NIkFZVkTlxSX3YeaAuUV1QwITUSiGNeEQollVXJJNM7SIWgiBWhOJKGMCVGlGdYyGaCz1d6ldx-tCk2xqINUxgirXBuKjAMkGDPayfN_JWZDAil0L3T0YkWldyF4pYulrxfCfxYYip9oi020nT1Zr23Lhao28jfLDpyugQhSGO2FlXXYOpp2BXTrhAzF3LXedrn9cfAbSzyKrA</recordid><startdate>20110914</startdate><enddate>20110914</enddate><creator>Kim, Youngsang</creator><creator>Pietsch, Torsten</creator><creator>Erbe, Artur</creator><creator>Belzig, Wolfgang</creator><creator>Scheer, Elke</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110914</creationdate><title>Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor</title><author>Kim, Youngsang ; Pietsch, Torsten ; Erbe, Artur ; Belzig, Wolfgang ; Scheer, Elke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-b41b777f4049d4f70243a3e79f240b1cdb9c2f18560f2ca0f92c2477aad581fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Coherence</topic><topic>Conductance</topic><topic>Conductors (devices)</topic><topic>Coupling (molecular)</topic><topic>Displacement</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Microscopy, Scanning Tunneling</topic><topic>Models, Statistical</topic><topic>Molecular Conformation</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Organic Chemicals - chemistry</topic><topic>Quantum Theory</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Temperature</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngsang</creatorcontrib><creatorcontrib>Pietsch, Torsten</creatorcontrib><creatorcontrib>Erbe, Artur</creatorcontrib><creatorcontrib>Belzig, Wolfgang</creatorcontrib><creatorcontrib>Scheer, Elke</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youngsang</au><au>Pietsch, Torsten</au><au>Erbe, Artur</au><au>Belzig, Wolfgang</au><au>Scheer, Elke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-09-14</date><risdate>2011</risdate><volume>11</volume><issue>9</issue><spage>3734</spage><epage>3738</epage><pages>3734-3738</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10–3 conductance quanta as well as with high conductance values above ∼0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21805977</pmid><doi>10.1021/nl201777m</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2011-09, Vol.11 (9), p.3734-3738 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_890031174 |
source | ACS Publications; MEDLINE |
subjects | Applied sciences Channels Coherence Conductance Conductors (devices) Coupling (molecular) Displacement Electric Conductivity Electrodes Electronics Electrons Exact sciences and technology Microscopy, Scanning Tunneling Models, Statistical Molecular Conformation Molecular electronics, nanoelectronics Nanostructure Nanotechnology - methods Organic Chemicals - chemistry Quantum Theory Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sulfhydryl Compounds - chemistry Temperature Transport |
title | Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benzenedithiol:%20A%20Broad-Range%20Single-Channel%20Molecular%20Conductor&rft.jtitle=Nano%20letters&rft.au=Kim,%20Youngsang&rft.date=2011-09-14&rft.volume=11&rft.issue=9&rft.spage=3734&rft.epage=3738&rft.pages=3734-3738&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl201777m&rft_dat=%3Cproquest_cross%3E1762050702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762050702&rft_id=info:pmid/21805977&rfr_iscdi=true |