Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors

An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2011-06, Vol.30 (6), p.841-851
Hauptverfasser: Garcia-Loureiro, A J, Seoane, N, Aldegunde, M, Valin, R, Asenov, A, Martinez, A, Kalna, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 851
container_issue 6
container_start_page 841
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 30
creator Garcia-Loureiro, A J
Seoane, N
Aldegunde, M
Valin, R
Asenov, A
Martinez, A
Kalna, K
description An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for large density variations thus applicable to device simulations with complex 3-D geometries. Test simulations of a 1-D metal-oxide semiconductor diode demonstrate that the DG approach discretized using our SOD scheme can be accurately calibrated against Schrödinger-Poisson calculations exhibiting lower discretization error than the previous schemes when using coarse grids and the same results for very fine meshes. 3-D test D-D simulations using the finite element method are performed on two devices: a 10 nm gate length double gate metal-oxide-semiconductor field-effect transistor (MOSFET) and a 40 nm gate length Tri-Gate fin field-effect transistor (FinFET). In 3-D D-D simulations, the SOD scheme is able to converge to physical solutions at high voltages even if the previous schemes fail when using the same mesh and equivalent conditions. The quantum corrected D-D simulations using the SOD scheme also converge with an atomistic mesh used for the 10 nm double gate MOSFET saving computational resources and can be accurately calibrated against the results from non-equilibrium Green's functions approach. Finally, the simulated I D -V G characteristics for the 40 nm gate length Tri-Gate are in an excellent agreement with experimental data.
doi_str_mv 10.1109/TCAD.2011.2107990
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889450628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5768129</ieee_id><sourcerecordid>2351411291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-7c0f9471df41e05298df44385a1a3fd327023a64d992c454854074b9669db4cb3</originalsourceid><addsrcrecordid>eNpdkc1O6zAQhS0EEuXnARAbiw2r9M7YTmwvUQu9SFwQoqwtN3EgKImL7Sx4e1wVsbirGc185-hIh5ALhDki6D_rxc1yzgBxzhCk1nBAZqi5LASWeEhmwKQqACQck5MYPwBQlEzPSLgftr0b3Jhs6vxIfUvTu6NLN8YufdFVsE2Xn_R5smOaBrrwIbh6h0ba-kB5saQv3TD1dn_L-n9Tn7o3mxx9tKOPte1dQ9fBZseYfIhn5Ki1fXTnP_OUvN7drhd_i4en1f3i5qGouWSpkDW0WkhsWoEOcliVN8FVadHytuFMAuO2Eo3WrBalUKUAKTa6qnSzEfWGn5Lrve82-M_JxWSGLtau7-3o_BSNUlqUUDGVyav_yA8_hTGHM6qSopIaZYZwD9XBxxhca7ahG2z4Mghm14HZdWB2HZifDrLmcq_pnHO_fCkrhUzzb6Q-gq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867467917</pqid></control><display><type>article</type><title>Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors</title><source>IEEE</source><creator>Garcia-Loureiro, A J ; Seoane, N ; Aldegunde, M ; Valin, R ; Asenov, A ; Martinez, A ; Kalna, K</creator><creatorcontrib>Garcia-Loureiro, A J ; Seoane, N ; Aldegunde, M ; Valin, R ; Asenov, A ; Martinez, A ; Kalna, K</creatorcontrib><description>An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for large density variations thus applicable to device simulations with complex 3-D geometries. Test simulations of a 1-D metal-oxide semiconductor diode demonstrate that the DG approach discretized using our SOD scheme can be accurately calibrated against Schrödinger-Poisson calculations exhibiting lower discretization error than the previous schemes when using coarse grids and the same results for very fine meshes. 3-D test D-D simulations using the finite element method are performed on two devices: a 10 nm gate length double gate metal-oxide-semiconductor field-effect transistor (MOSFET) and a 40 nm gate length Tri-Gate fin field-effect transistor (FinFET). In 3-D D-D simulations, the SOD scheme is able to converge to physical solutions at high voltages even if the previous schemes fail when using the same mesh and equivalent conditions. The quantum corrected D-D simulations using the SOD scheme also converge with an atomistic mesh used for the 10 nm double gate MOSFET saving computational resources and can be accurately calibrated against the results from non-equilibrium Green's functions approach. Finally, the simulated I D -V G characteristics for the 40 nm gate length Tri-Gate are in an excellent agreement with experimental data.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2011.2107990</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Computer simulation ; Density-gradient ; Equations ; Finite element method ; Finite element methods ; Gates ; Logic gates ; Mathematical analysis ; Mathematical model ; metal-oxide-semiconductor (MOS) devices ; MOSFET circuits ; Nanostructure ; quantum theory ; semiconductor device modeling ; Semiconductor devices ; Sod ; Solid modeling ; Transistors</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2011-06, Vol.30 (6), p.841-851</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-7c0f9471df41e05298df44385a1a3fd327023a64d992c454854074b9669db4cb3</citedby><cites>FETCH-LOGICAL-c372t-7c0f9471df41e05298df44385a1a3fd327023a64d992c454854074b9669db4cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5768129$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5768129$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia-Loureiro, A J</creatorcontrib><creatorcontrib>Seoane, N</creatorcontrib><creatorcontrib>Aldegunde, M</creatorcontrib><creatorcontrib>Valin, R</creatorcontrib><creatorcontrib>Asenov, A</creatorcontrib><creatorcontrib>Martinez, A</creatorcontrib><creatorcontrib>Kalna, K</creatorcontrib><title>Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for large density variations thus applicable to device simulations with complex 3-D geometries. Test simulations of a 1-D metal-oxide semiconductor diode demonstrate that the DG approach discretized using our SOD scheme can be accurately calibrated against Schrödinger-Poisson calculations exhibiting lower discretization error than the previous schemes when using coarse grids and the same results for very fine meshes. 3-D test D-D simulations using the finite element method are performed on two devices: a 10 nm gate length double gate metal-oxide-semiconductor field-effect transistor (MOSFET) and a 40 nm gate length Tri-Gate fin field-effect transistor (FinFET). In 3-D D-D simulations, the SOD scheme is able to converge to physical solutions at high voltages even if the previous schemes fail when using the same mesh and equivalent conditions. The quantum corrected D-D simulations using the SOD scheme also converge with an atomistic mesh used for the 10 nm double gate MOSFET saving computational resources and can be accurately calibrated against the results from non-equilibrium Green's functions approach. Finally, the simulated I D -V G characteristics for the 40 nm gate length Tri-Gate are in an excellent agreement with experimental data.</description><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Density-gradient</subject><subject>Equations</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Gates</subject><subject>Logic gates</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>metal-oxide-semiconductor (MOS) devices</subject><subject>MOSFET circuits</subject><subject>Nanostructure</subject><subject>quantum theory</subject><subject>semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Sod</subject><subject>Solid modeling</subject><subject>Transistors</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1O6zAQhS0EEuXnARAbiw2r9M7YTmwvUQu9SFwQoqwtN3EgKImL7Sx4e1wVsbirGc185-hIh5ALhDki6D_rxc1yzgBxzhCk1nBAZqi5LASWeEhmwKQqACQck5MYPwBQlEzPSLgftr0b3Jhs6vxIfUvTu6NLN8YufdFVsE2Xn_R5smOaBrrwIbh6h0ba-kB5saQv3TD1dn_L-n9Tn7o3mxx9tKOPte1dQ9fBZseYfIhn5Ki1fXTnP_OUvN7drhd_i4en1f3i5qGouWSpkDW0WkhsWoEOcliVN8FVadHytuFMAuO2Eo3WrBalUKUAKTa6qnSzEfWGn5Lrve82-M_JxWSGLtau7-3o_BSNUlqUUDGVyav_yA8_hTGHM6qSopIaZYZwD9XBxxhca7ahG2z4Mghm14HZdWB2HZifDrLmcq_pnHO_fCkrhUzzb6Q-gq4</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Garcia-Loureiro, A J</creator><creator>Seoane, N</creator><creator>Aldegunde, M</creator><creator>Valin, R</creator><creator>Asenov, A</creator><creator>Martinez, A</creator><creator>Kalna, K</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201106</creationdate><title>Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors</title><author>Garcia-Loureiro, A J ; Seoane, N ; Aldegunde, M ; Valin, R ; Asenov, A ; Martinez, A ; Kalna, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-7c0f9471df41e05298df44385a1a3fd327023a64d992c454854074b9669db4cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Density-gradient</topic><topic>Equations</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Gates</topic><topic>Logic gates</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>metal-oxide-semiconductor (MOS) devices</topic><topic>MOSFET circuits</topic><topic>Nanostructure</topic><topic>quantum theory</topic><topic>semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Sod</topic><topic>Solid modeling</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Loureiro, A J</creatorcontrib><creatorcontrib>Seoane, N</creatorcontrib><creatorcontrib>Aldegunde, M</creatorcontrib><creatorcontrib>Valin, R</creatorcontrib><creatorcontrib>Asenov, A</creatorcontrib><creatorcontrib>Martinez, A</creatorcontrib><creatorcontrib>Kalna, K</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia-Loureiro, A J</au><au>Seoane, N</au><au>Aldegunde, M</au><au>Valin, R</au><au>Asenov, A</au><au>Martinez, A</au><au>Kalna, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2011-06</date><risdate>2011</risdate><volume>30</volume><issue>6</issue><spage>841</spage><epage>851</epage><pages>841-851</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for large density variations thus applicable to device simulations with complex 3-D geometries. Test simulations of a 1-D metal-oxide semiconductor diode demonstrate that the DG approach discretized using our SOD scheme can be accurately calibrated against Schrödinger-Poisson calculations exhibiting lower discretization error than the previous schemes when using coarse grids and the same results for very fine meshes. 3-D test D-D simulations using the finite element method are performed on two devices: a 10 nm gate length double gate metal-oxide-semiconductor field-effect transistor (MOSFET) and a 40 nm gate length Tri-Gate fin field-effect transistor (FinFET). In 3-D D-D simulations, the SOD scheme is able to converge to physical solutions at high voltages even if the previous schemes fail when using the same mesh and equivalent conditions. The quantum corrected D-D simulations using the SOD scheme also converge with an atomistic mesh used for the 10 nm double gate MOSFET saving computational resources and can be accurately calibrated against the results from non-equilibrium Green's functions approach. Finally, the simulated I D -V G characteristics for the 40 nm gate length Tri-Gate are in an excellent agreement with experimental data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2011.2107990</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2011-06, Vol.30 (6), p.841-851
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_miscellaneous_889450628
source IEEE
subjects Computational modeling
Computer simulation
Density-gradient
Equations
Finite element method
Finite element methods
Gates
Logic gates
Mathematical analysis
Mathematical model
metal-oxide-semiconductor (MOS) devices
MOSFET circuits
Nanostructure
quantum theory
semiconductor device modeling
Semiconductor devices
Sod
Solid modeling
Transistors
title Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20the%20Density%20Gradient%20Quantum%20Corrections%20for%203-D%20Simulations%20of%20Multigate%20Nanoscaled%20Transistors&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Garcia-Loureiro,%20A%20J&rft.date=2011-06&rft.volume=30&rft.issue=6&rft.spage=841&rft.epage=851&rft.pages=841-851&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2011.2107990&rft_dat=%3Cproquest_RIE%3E2351411291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867467917&rft_id=info:pmid/&rft_ieee_id=5768129&rfr_iscdi=true