Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors
An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2011-06, Vol.30 (6), p.841-851 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 851 |
---|---|
container_issue | 6 |
container_start_page | 841 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 30 |
creator | Garcia-Loureiro, A J Seoane, N Aldegunde, M Valin, R Asenov, A Martinez, A Kalna, K |
description | An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for large density variations thus applicable to device simulations with complex 3-D geometries. Test simulations of a 1-D metal-oxide semiconductor diode demonstrate that the DG approach discretized using our SOD scheme can be accurately calibrated against Schrödinger-Poisson calculations exhibiting lower discretization error than the previous schemes when using coarse grids and the same results for very fine meshes. 3-D test D-D simulations using the finite element method are performed on two devices: a 10 nm gate length double gate metal-oxide-semiconductor field-effect transistor (MOSFET) and a 40 nm gate length Tri-Gate fin field-effect transistor (FinFET). In 3-D D-D simulations, the SOD scheme is able to converge to physical solutions at high voltages even if the previous schemes fail when using the same mesh and equivalent conditions. The quantum corrected D-D simulations using the SOD scheme also converge with an atomistic mesh used for the 10 nm double gate MOSFET saving computational resources and can be accurately calibrated against the results from non-equilibrium Green's functions approach. Finally, the simulated I D -V G characteristics for the 40 nm gate length Tri-Gate are in an excellent agreement with experimental data. |
doi_str_mv | 10.1109/TCAD.2011.2107990 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889450628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5768129</ieee_id><sourcerecordid>2351411291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-7c0f9471df41e05298df44385a1a3fd327023a64d992c454854074b9669db4cb3</originalsourceid><addsrcrecordid>eNpdkc1O6zAQhS0EEuXnARAbiw2r9M7YTmwvUQu9SFwQoqwtN3EgKImL7Sx4e1wVsbirGc185-hIh5ALhDki6D_rxc1yzgBxzhCk1nBAZqi5LASWeEhmwKQqACQck5MYPwBQlEzPSLgftr0b3Jhs6vxIfUvTu6NLN8YufdFVsE2Xn_R5smOaBrrwIbh6h0ba-kB5saQv3TD1dn_L-n9Tn7o3mxx9tKOPte1dQ9fBZseYfIhn5Ki1fXTnP_OUvN7drhd_i4en1f3i5qGouWSpkDW0WkhsWoEOcliVN8FVadHytuFMAuO2Eo3WrBalUKUAKTa6qnSzEfWGn5Lrve82-M_JxWSGLtau7-3o_BSNUlqUUDGVyav_yA8_hTGHM6qSopIaZYZwD9XBxxhca7ahG2z4Mghm14HZdWB2HZifDrLmcq_pnHO_fCkrhUzzb6Q-gq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867467917</pqid></control><display><type>article</type><title>Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors</title><source>IEEE</source><creator>Garcia-Loureiro, A J ; Seoane, N ; Aldegunde, M ; Valin, R ; Asenov, A ; Martinez, A ; Kalna, K</creator><creatorcontrib>Garcia-Loureiro, A J ; Seoane, N ; Aldegunde, M ; Valin, R ; Asenov, A ; Martinez, A ; Kalna, K</creatorcontrib><description>An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for large density variations thus applicable to device simulations with complex 3-D geometries. Test simulations of a 1-D metal-oxide semiconductor diode demonstrate that the DG approach discretized using our SOD scheme can be accurately calibrated against Schrödinger-Poisson calculations exhibiting lower discretization error than the previous schemes when using coarse grids and the same results for very fine meshes. 3-D test D-D simulations using the finite element method are performed on two devices: a 10 nm gate length double gate metal-oxide-semiconductor field-effect transistor (MOSFET) and a 40 nm gate length Tri-Gate fin field-effect transistor (FinFET). In 3-D D-D simulations, the SOD scheme is able to converge to physical solutions at high voltages even if the previous schemes fail when using the same mesh and equivalent conditions. The quantum corrected D-D simulations using the SOD scheme also converge with an atomistic mesh used for the 10 nm double gate MOSFET saving computational resources and can be accurately calibrated against the results from non-equilibrium Green's functions approach. Finally, the simulated I D -V G characteristics for the 40 nm gate length Tri-Gate are in an excellent agreement with experimental data.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2011.2107990</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Computer simulation ; Density-gradient ; Equations ; Finite element method ; Finite element methods ; Gates ; Logic gates ; Mathematical analysis ; Mathematical model ; metal-oxide-semiconductor (MOS) devices ; MOSFET circuits ; Nanostructure ; quantum theory ; semiconductor device modeling ; Semiconductor devices ; Sod ; Solid modeling ; Transistors</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2011-06, Vol.30 (6), p.841-851</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-7c0f9471df41e05298df44385a1a3fd327023a64d992c454854074b9669db4cb3</citedby><cites>FETCH-LOGICAL-c372t-7c0f9471df41e05298df44385a1a3fd327023a64d992c454854074b9669db4cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5768129$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5768129$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia-Loureiro, A J</creatorcontrib><creatorcontrib>Seoane, N</creatorcontrib><creatorcontrib>Aldegunde, M</creatorcontrib><creatorcontrib>Valin, R</creatorcontrib><creatorcontrib>Asenov, A</creatorcontrib><creatorcontrib>Martinez, A</creatorcontrib><creatorcontrib>Kalna, K</creatorcontrib><title>Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for large density variations thus applicable to device simulations with complex 3-D geometries. Test simulations of a 1-D metal-oxide semiconductor diode demonstrate that the DG approach discretized using our SOD scheme can be accurately calibrated against Schrödinger-Poisson calculations exhibiting lower discretization error than the previous schemes when using coarse grids and the same results for very fine meshes. 3-D test D-D simulations using the finite element method are performed on two devices: a 10 nm gate length double gate metal-oxide-semiconductor field-effect transistor (MOSFET) and a 40 nm gate length Tri-Gate fin field-effect transistor (FinFET). In 3-D D-D simulations, the SOD scheme is able to converge to physical solutions at high voltages even if the previous schemes fail when using the same mesh and equivalent conditions. The quantum corrected D-D simulations using the SOD scheme also converge with an atomistic mesh used for the 10 nm double gate MOSFET saving computational resources and can be accurately calibrated against the results from non-equilibrium Green's functions approach. Finally, the simulated I D -V G characteristics for the 40 nm gate length Tri-Gate are in an excellent agreement with experimental data.</description><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Density-gradient</subject><subject>Equations</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Gates</subject><subject>Logic gates</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>metal-oxide-semiconductor (MOS) devices</subject><subject>MOSFET circuits</subject><subject>Nanostructure</subject><subject>quantum theory</subject><subject>semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Sod</subject><subject>Solid modeling</subject><subject>Transistors</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1O6zAQhS0EEuXnARAbiw2r9M7YTmwvUQu9SFwQoqwtN3EgKImL7Sx4e1wVsbirGc185-hIh5ALhDki6D_rxc1yzgBxzhCk1nBAZqi5LASWeEhmwKQqACQck5MYPwBQlEzPSLgftr0b3Jhs6vxIfUvTu6NLN8YufdFVsE2Xn_R5smOaBrrwIbh6h0ba-kB5saQv3TD1dn_L-n9Tn7o3mxx9tKOPte1dQ9fBZseYfIhn5Ki1fXTnP_OUvN7drhd_i4en1f3i5qGouWSpkDW0WkhsWoEOcliVN8FVadHytuFMAuO2Eo3WrBalUKUAKTa6qnSzEfWGn5Lrve82-M_JxWSGLtau7-3o_BSNUlqUUDGVyav_yA8_hTGHM6qSopIaZYZwD9XBxxhca7ahG2z4Mghm14HZdWB2HZifDrLmcq_pnHO_fCkrhUzzb6Q-gq4</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Garcia-Loureiro, A J</creator><creator>Seoane, N</creator><creator>Aldegunde, M</creator><creator>Valin, R</creator><creator>Asenov, A</creator><creator>Martinez, A</creator><creator>Kalna, K</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201106</creationdate><title>Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors</title><author>Garcia-Loureiro, A J ; Seoane, N ; Aldegunde, M ; Valin, R ; Asenov, A ; Martinez, A ; Kalna, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-7c0f9471df41e05298df44385a1a3fd327023a64d992c454854074b9669db4cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Density-gradient</topic><topic>Equations</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Gates</topic><topic>Logic gates</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>metal-oxide-semiconductor (MOS) devices</topic><topic>MOSFET circuits</topic><topic>Nanostructure</topic><topic>quantum theory</topic><topic>semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Sod</topic><topic>Solid modeling</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Loureiro, A J</creatorcontrib><creatorcontrib>Seoane, N</creatorcontrib><creatorcontrib>Aldegunde, M</creatorcontrib><creatorcontrib>Valin, R</creatorcontrib><creatorcontrib>Asenov, A</creatorcontrib><creatorcontrib>Martinez, A</creatorcontrib><creatorcontrib>Kalna, K</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia-Loureiro, A J</au><au>Seoane, N</au><au>Aldegunde, M</au><au>Valin, R</au><au>Asenov, A</au><au>Martinez, A</au><au>Kalna, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2011-06</date><risdate>2011</risdate><volume>30</volume><issue>6</issue><spage>841</spage><epage>851</epage><pages>841-851</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>An efficient implementation of the density-gradient (DG) approach for the finite element and finite difference methods and its application in drift-diffusion (D-D) simulations is described in detail. The new, second-order differential (SOD) scheme is compatible with relatively coarse grids even for large density variations thus applicable to device simulations with complex 3-D geometries. Test simulations of a 1-D metal-oxide semiconductor diode demonstrate that the DG approach discretized using our SOD scheme can be accurately calibrated against Schrödinger-Poisson calculations exhibiting lower discretization error than the previous schemes when using coarse grids and the same results for very fine meshes. 3-D test D-D simulations using the finite element method are performed on two devices: a 10 nm gate length double gate metal-oxide-semiconductor field-effect transistor (MOSFET) and a 40 nm gate length Tri-Gate fin field-effect transistor (FinFET). In 3-D D-D simulations, the SOD scheme is able to converge to physical solutions at high voltages even if the previous schemes fail when using the same mesh and equivalent conditions. The quantum corrected D-D simulations using the SOD scheme also converge with an atomistic mesh used for the 10 nm double gate MOSFET saving computational resources and can be accurately calibrated against the results from non-equilibrium Green's functions approach. Finally, the simulated I D -V G characteristics for the 40 nm gate length Tri-Gate are in an excellent agreement with experimental data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2011.2107990</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2011-06, Vol.30 (6), p.841-851 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_miscellaneous_889450628 |
source | IEEE |
subjects | Computational modeling Computer simulation Density-gradient Equations Finite element method Finite element methods Gates Logic gates Mathematical analysis Mathematical model metal-oxide-semiconductor (MOS) devices MOSFET circuits Nanostructure quantum theory semiconductor device modeling Semiconductor devices Sod Solid modeling Transistors |
title | Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20the%20Density%20Gradient%20Quantum%20Corrections%20for%203-D%20Simulations%20of%20Multigate%20Nanoscaled%20Transistors&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Garcia-Loureiro,%20A%20J&rft.date=2011-06&rft.volume=30&rft.issue=6&rft.spage=841&rft.epage=851&rft.pages=841-851&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2011.2107990&rft_dat=%3Cproquest_RIE%3E2351411291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867467917&rft_id=info:pmid/&rft_ieee_id=5768129&rfr_iscdi=true |