Review of shell models for contrast agent microbubbles

Micrometer-scale encapsulated gas bubbles, known as ultrasound contrast agents, are used in ultrasound medical diagnostics for enhancing blood-tissue contrast during an ultrasonic examination. They are also employed in therapy as an activator of drug incorporation or extravasation. Adequate modeling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-05, Vol.58 (5), p.981-993
Hauptverfasser: Doinikov, A A, Bouakaz, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 993
container_issue 5
container_start_page 981
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 58
creator Doinikov, A A
Bouakaz, A
description Micrometer-scale encapsulated gas bubbles, known as ultrasound contrast agents, are used in ultrasound medical diagnostics for enhancing blood-tissue contrast during an ultrasonic examination. They are also employed in therapy as an activator of drug incorporation or extravasation. Adequate modeling of the effect of encapsulation is of primary importance because it is the encapsulating shell that determines many of the functional properties of contrast agents. In this review, existing approaches to the modeling of the radial motion of an encapsulated bubble are discussed and comparative analysis of available shell models is conducted. The capabilities of the shell models are evaluated in the context of recent experimental observations, such as compression-only behavior and the dependence of shell material properties on initial bubble radius. It is shown that for early shell models, the main problem is that the behavior of encapsulation is described by linear elastic and viscous laws, whereas recent experimental data attest to complicated rheological properties inherent in shell materials. Currently, a trend toward models involving nonlinear laws for shell elasticity and viscosity is observed. In particular, nonlinear models have been proposed that allow one to reproduce compression-only behavior. However, the problem of the radius dependence of shell material parameters remains unsolved.
doi_str_mv 10.1109/TUFFC.2011.1899
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889445462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5776753</ieee_id><sourcerecordid>2359940911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-a04a194009d31c3d9be36711c1d220126d62a847d5947624b4a074303441e1313</originalsourceid><addsrcrecordid>eNqF0MtLxDAQBvAgiq6PswdBiiCeus4kk7Q5yuKqIAii55K2qVb60KRV_O_NPlTw4imH_PJl5mPsEGGKCPr84XE-n005IE4x1XqDTVByGadayk02gTSVsQCEHbbr_QsAEmm-zXY4Ks5B0oSpe_te24-oryL_bJsmavvSNj6qehcVfTc444fIPNluiNq6cH0-5nlj_T7bqkzj7cH63GOP88uH2XV8e3d1M7u4jQuSOMQGyKAmAF0KLESpcytUglhgGf5HrkrFTUpJKTUlilNOBhISIIjQokCxx85Wua-ufxutH7K29kWY03S2H32WpppIkuL_SxXmIFBpkCd_5Es_ui6sEdAiUCzjzlco7Oy9s1X26urWuM8MIVtUny2rzxbVZ4vqw4vjdeyYt7b88d9dB3C6BsYXpqmc6Yra_zpCDVwlwR2tXG2t_bmWSaISKcQXhQOQnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868894362</pqid></control><display><type>article</type><title>Review of shell models for contrast agent microbubbles</title><source>IEEE Electronic Library (IEL)</source><creator>Doinikov, A A ; Bouakaz, A</creator><creatorcontrib>Doinikov, A A ; Bouakaz, A</creatorcontrib><description>Micrometer-scale encapsulated gas bubbles, known as ultrasound contrast agents, are used in ultrasound medical diagnostics for enhancing blood-tissue contrast during an ultrasonic examination. They are also employed in therapy as an activator of drug incorporation or extravasation. Adequate modeling of the effect of encapsulation is of primary importance because it is the encapsulating shell that determines many of the functional properties of contrast agents. In this review, existing approaches to the modeling of the radial motion of an encapsulated bubble are discussed and comparative analysis of available shell models is conducted. The capabilities of the shell models are evaluated in the context of recent experimental observations, such as compression-only behavior and the dependence of shell material properties on initial bubble radius. It is shown that for early shell models, the main problem is that the behavior of encapsulation is described by linear elastic and viscous laws, whereas recent experimental data attest to complicated rheological properties inherent in shell materials. Currently, a trend toward models involving nonlinear laws for shell elasticity and viscosity is observed. In particular, nonlinear models have been proposed that allow one to reproduce compression-only behavior. However, the problem of the radius dependence of shell material parameters remains unsolved.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2011.1899</identifier><identifier>PMID: 21622054</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic signal processing ; Acoustics ; Algorithms ; Analytical models ; Biological and medical sciences ; Bubbles ; Cardiovascular system ; Comparative analysis ; Contrast agents ; Contrast Media - chemistry ; Damping ; Elasticity ; Encapsulation ; Equations ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Investigative techniques, diagnostic techniques (general aspects) ; Laws ; Materials ; Mathematical model ; Mathematical models ; Medical sciences ; Microbubbles ; Microorganisms ; Miscellaneous. Technology ; Models, Chemical ; Nonlinearity ; Oscillators ; Particle Size ; Physics ; Shells ; Studies ; Ultrasonic investigative techniques ; Viscosity</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-05, Vol.58 (5), p.981-993</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-a04a194009d31c3d9be36711c1d220126d62a847d5947624b4a074303441e1313</citedby><cites>FETCH-LOGICAL-c451t-a04a194009d31c3d9be36711c1d220126d62a847d5947624b4a074303441e1313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5776753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5776753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24190267$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21622054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doinikov, A A</creatorcontrib><creatorcontrib>Bouakaz, A</creatorcontrib><title>Review of shell models for contrast agent microbubbles</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Micrometer-scale encapsulated gas bubbles, known as ultrasound contrast agents, are used in ultrasound medical diagnostics for enhancing blood-tissue contrast during an ultrasonic examination. They are also employed in therapy as an activator of drug incorporation or extravasation. Adequate modeling of the effect of encapsulation is of primary importance because it is the encapsulating shell that determines many of the functional properties of contrast agents. In this review, existing approaches to the modeling of the radial motion of an encapsulated bubble are discussed and comparative analysis of available shell models is conducted. The capabilities of the shell models are evaluated in the context of recent experimental observations, such as compression-only behavior and the dependence of shell material properties on initial bubble radius. It is shown that for early shell models, the main problem is that the behavior of encapsulation is described by linear elastic and viscous laws, whereas recent experimental data attest to complicated rheological properties inherent in shell materials. Currently, a trend toward models involving nonlinear laws for shell elasticity and viscosity is observed. In particular, nonlinear models have been proposed that allow one to reproduce compression-only behavior. However, the problem of the radius dependence of shell material parameters remains unsolved.</description><subject>Acoustic signal processing</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Biological and medical sciences</subject><subject>Bubbles</subject><subject>Cardiovascular system</subject><subject>Comparative analysis</subject><subject>Contrast agents</subject><subject>Contrast Media - chemistry</subject><subject>Damping</subject><subject>Elasticity</subject><subject>Encapsulation</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Laws</subject><subject>Materials</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Microbubbles</subject><subject>Microorganisms</subject><subject>Miscellaneous. Technology</subject><subject>Models, Chemical</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Shells</subject><subject>Studies</subject><subject>Ultrasonic investigative techniques</subject><subject>Viscosity</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0MtLxDAQBvAgiq6PswdBiiCeus4kk7Q5yuKqIAii55K2qVb60KRV_O_NPlTw4imH_PJl5mPsEGGKCPr84XE-n005IE4x1XqDTVByGadayk02gTSVsQCEHbbr_QsAEmm-zXY4Ks5B0oSpe_te24-oryL_bJsmavvSNj6qehcVfTc444fIPNluiNq6cH0-5nlj_T7bqkzj7cH63GOP88uH2XV8e3d1M7u4jQuSOMQGyKAmAF0KLESpcytUglhgGf5HrkrFTUpJKTUlilNOBhISIIjQokCxx85Wua-ufxutH7K29kWY03S2H32WpppIkuL_SxXmIFBpkCd_5Es_ui6sEdAiUCzjzlco7Oy9s1X26urWuM8MIVtUny2rzxbVZ4vqw4vjdeyYt7b88d9dB3C6BsYXpqmc6Yra_zpCDVwlwR2tXG2t_bmWSaISKcQXhQOQnA</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Doinikov, A A</creator><creator>Bouakaz, A</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110501</creationdate><title>Review of shell models for contrast agent microbubbles</title><author>Doinikov, A A ; Bouakaz, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-a04a194009d31c3d9be36711c1d220126d62a847d5947624b4a074303441e1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic signal processing</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Biological and medical sciences</topic><topic>Bubbles</topic><topic>Cardiovascular system</topic><topic>Comparative analysis</topic><topic>Contrast agents</topic><topic>Contrast Media - chemistry</topic><topic>Damping</topic><topic>Elasticity</topic><topic>Encapsulation</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Laws</topic><topic>Materials</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Microbubbles</topic><topic>Microorganisms</topic><topic>Miscellaneous. Technology</topic><topic>Models, Chemical</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Shells</topic><topic>Studies</topic><topic>Ultrasonic investigative techniques</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doinikov, A A</creatorcontrib><creatorcontrib>Bouakaz, A</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doinikov, A A</au><au>Bouakaz, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of shell models for contrast agent microbubbles</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>58</volume><issue>5</issue><spage>981</spage><epage>993</epage><pages>981-993</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Micrometer-scale encapsulated gas bubbles, known as ultrasound contrast agents, are used in ultrasound medical diagnostics for enhancing blood-tissue contrast during an ultrasonic examination. They are also employed in therapy as an activator of drug incorporation or extravasation. Adequate modeling of the effect of encapsulation is of primary importance because it is the encapsulating shell that determines many of the functional properties of contrast agents. In this review, existing approaches to the modeling of the radial motion of an encapsulated bubble are discussed and comparative analysis of available shell models is conducted. The capabilities of the shell models are evaluated in the context of recent experimental observations, such as compression-only behavior and the dependence of shell material properties on initial bubble radius. It is shown that for early shell models, the main problem is that the behavior of encapsulation is described by linear elastic and viscous laws, whereas recent experimental data attest to complicated rheological properties inherent in shell materials. Currently, a trend toward models involving nonlinear laws for shell elasticity and viscosity is observed. In particular, nonlinear models have been proposed that allow one to reproduce compression-only behavior. However, the problem of the radius dependence of shell material parameters remains unsolved.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21622054</pmid><doi>10.1109/TUFFC.2011.1899</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-05, Vol.58 (5), p.981-993
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_889445462
source IEEE Electronic Library (IEL)
subjects Acoustic signal processing
Acoustics
Algorithms
Analytical models
Biological and medical sciences
Bubbles
Cardiovascular system
Comparative analysis
Contrast agents
Contrast Media - chemistry
Damping
Elasticity
Encapsulation
Equations
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Investigative techniques, diagnostic techniques (general aspects)
Laws
Materials
Mathematical model
Mathematical models
Medical sciences
Microbubbles
Microorganisms
Miscellaneous. Technology
Models, Chemical
Nonlinearity
Oscillators
Particle Size
Physics
Shells
Studies
Ultrasonic investigative techniques
Viscosity
title Review of shell models for contrast agent microbubbles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20shell%20models%20for%20contrast%20agent%20microbubbles&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Doinikov,%20A%20A&rft.date=2011-05-01&rft.volume=58&rft.issue=5&rft.spage=981&rft.epage=993&rft.pages=981-993&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.1899&rft_dat=%3Cproquest_RIE%3E2359940911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868894362&rft_id=info:pmid/21622054&rft_ieee_id=5776753&rfr_iscdi=true