Modeling radiative heating of liquids in microchip reaction chambers
Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper p...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2011-06, Vol.167 (2), p.531-536 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 536 |
---|---|
container_issue | 2 |
container_start_page | 531 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 167 |
creator | Phaneuf, Christopher R. Pak, Nikita Forest, Craig R. |
description | Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper presents a broadly applicable approach to modeling the thermal response of liquid undergoing radiative heating in microchip reaction chambers by using optical and material properties for analytical and finite element methods. The fidelity of the model is demonstrated with experimental validation for two types of microchips, glass and plastic, and two types of radiative sources, blackbody and monochromatic, revealing root mean square deviations between 1.37
°C and 3.14
°C. By providing an understanding of how a radiative source interacts with a particular device and the resulting transient and steady state behavior, this modeling process can enable designs that maximize the efficiency and cost-effectiveness of a microfluidic heating system. These generalized models are expected to apply to any source, materials, and geometry for which the optical and material properties are known. |
doi_str_mv | 10.1016/j.sna.2011.02.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889442426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424711000483</els_id><sourcerecordid>889442426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-7fede8c2c5d99c5ec3f98bdfa1a9c132eb82a7e2f6d62ad00cb31b61799b9ea23</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlxilhbadxLE6oPKUiLnC2HHtDt8qjtVMk_j2uypnTSKuZ0c7H2DWHggOvbjdFHGwhgPMCRAEgTtiM10rmEip9ymagRZmXolTn7CLGDQBIqdSMPbyNHjsavrJgPdmJvjFbY9J0Gduso92efMxoyHpyYXRr2mYBrZtoHDK3tn2DIV6ys9Z2Ea_-dM4-nx4_li_56v35dXm_yp0UespVix5rJ9zCa-0W6GSr68a3llvtuBTY1MIqFG3lK2E9gGskbyqutG40WiHn7ObYuw3jbo9xMj1Fh11nBxz30dS1LtNGUSUnPzrTzzEGbM02UG_Dj-FgDsDMxiRg5gDMgDAJWMrcHTOYJnwTBhMd4eDQU0A3GT_SP-lfMGZ0wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889442426</pqid></control><display><type>article</type><title>Modeling radiative heating of liquids in microchip reaction chambers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Phaneuf, Christopher R. ; Pak, Nikita ; Forest, Craig R.</creator><creatorcontrib>Phaneuf, Christopher R. ; Pak, Nikita ; Forest, Craig R.</creatorcontrib><description>Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper presents a broadly applicable approach to modeling the thermal response of liquid undergoing radiative heating in microchip reaction chambers by using optical and material properties for analytical and finite element methods. The fidelity of the model is demonstrated with experimental validation for two types of microchips, glass and plastic, and two types of radiative sources, blackbody and monochromatic, revealing root mean square deviations between 1.37
°C and 3.14
°C. By providing an understanding of how a radiative source interacts with a particular device and the resulting transient and steady state behavior, this modeling process can enable designs that maximize the efficiency and cost-effectiveness of a microfluidic heating system. These generalized models are expected to apply to any source, materials, and geometry for which the optical and material properties are known.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2011.02.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chambers ; Design engineering ; Finite element ; Heat transfer ; Heating ; Liquids ; Mathematical analysis ; Mathematical models ; Microfluidics ; Optical properties ; Radiative heating ; Temperature control</subject><ispartof>Sensors and actuators. A. Physical., 2011-06, Vol.167 (2), p.531-536</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-7fede8c2c5d99c5ec3f98bdfa1a9c132eb82a7e2f6d62ad00cb31b61799b9ea23</citedby><cites>FETCH-LOGICAL-c329t-7fede8c2c5d99c5ec3f98bdfa1a9c132eb82a7e2f6d62ad00cb31b61799b9ea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2011.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Phaneuf, Christopher R.</creatorcontrib><creatorcontrib>Pak, Nikita</creatorcontrib><creatorcontrib>Forest, Craig R.</creatorcontrib><title>Modeling radiative heating of liquids in microchip reaction chambers</title><title>Sensors and actuators. A. Physical.</title><description>Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper presents a broadly applicable approach to modeling the thermal response of liquid undergoing radiative heating in microchip reaction chambers by using optical and material properties for analytical and finite element methods. The fidelity of the model is demonstrated with experimental validation for two types of microchips, glass and plastic, and two types of radiative sources, blackbody and monochromatic, revealing root mean square deviations between 1.37
°C and 3.14
°C. By providing an understanding of how a radiative source interacts with a particular device and the resulting transient and steady state behavior, this modeling process can enable designs that maximize the efficiency and cost-effectiveness of a microfluidic heating system. These generalized models are expected to apply to any source, materials, and geometry for which the optical and material properties are known.</description><subject>Chambers</subject><subject>Design engineering</subject><subject>Finite element</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microfluidics</subject><subject>Optical properties</subject><subject>Radiative heating</subject><subject>Temperature control</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlxilhbadxLE6oPKUiLnC2HHtDt8qjtVMk_j2uypnTSKuZ0c7H2DWHggOvbjdFHGwhgPMCRAEgTtiM10rmEip9ymagRZmXolTn7CLGDQBIqdSMPbyNHjsavrJgPdmJvjFbY9J0Gduso92efMxoyHpyYXRr2mYBrZtoHDK3tn2DIV6ys9Z2Ea_-dM4-nx4_li_56v35dXm_yp0UespVix5rJ9zCa-0W6GSr68a3llvtuBTY1MIqFG3lK2E9gGskbyqutG40WiHn7ObYuw3jbo9xMj1Fh11nBxz30dS1LtNGUSUnPzrTzzEGbM02UG_Dj-FgDsDMxiRg5gDMgDAJWMrcHTOYJnwTBhMd4eDQU0A3GT_SP-lfMGZ0wA</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Phaneuf, Christopher R.</creator><creator>Pak, Nikita</creator><creator>Forest, Craig R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Modeling radiative heating of liquids in microchip reaction chambers</title><author>Phaneuf, Christopher R. ; Pak, Nikita ; Forest, Craig R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-7fede8c2c5d99c5ec3f98bdfa1a9c132eb82a7e2f6d62ad00cb31b61799b9ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chambers</topic><topic>Design engineering</topic><topic>Finite element</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microfluidics</topic><topic>Optical properties</topic><topic>Radiative heating</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phaneuf, Christopher R.</creatorcontrib><creatorcontrib>Pak, Nikita</creatorcontrib><creatorcontrib>Forest, Craig R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phaneuf, Christopher R.</au><au>Pak, Nikita</au><au>Forest, Craig R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling radiative heating of liquids in microchip reaction chambers</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>167</volume><issue>2</issue><spage>531</spage><epage>536</epage><pages>531-536</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper presents a broadly applicable approach to modeling the thermal response of liquid undergoing radiative heating in microchip reaction chambers by using optical and material properties for analytical and finite element methods. The fidelity of the model is demonstrated with experimental validation for two types of microchips, glass and plastic, and two types of radiative sources, blackbody and monochromatic, revealing root mean square deviations between 1.37
°C and 3.14
°C. By providing an understanding of how a radiative source interacts with a particular device and the resulting transient and steady state behavior, this modeling process can enable designs that maximize the efficiency and cost-effectiveness of a microfluidic heating system. These generalized models are expected to apply to any source, materials, and geometry for which the optical and material properties are known.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2011.02.002</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2011-06, Vol.167 (2), p.531-536 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_miscellaneous_889442426 |
source | Access via ScienceDirect (Elsevier) |
subjects | Chambers Design engineering Finite element Heat transfer Heating Liquids Mathematical analysis Mathematical models Microfluidics Optical properties Radiative heating Temperature control |
title | Modeling radiative heating of liquids in microchip reaction chambers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20radiative%20heating%20of%20liquids%20in%20microchip%20reaction%20chambers&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Phaneuf,%20Christopher%20R.&rft.date=2011-06-01&rft.volume=167&rft.issue=2&rft.spage=531&rft.epage=536&rft.pages=531-536&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2011.02.002&rft_dat=%3Cproquest_cross%3E889442426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889442426&rft_id=info:pmid/&rft_els_id=S0924424711000483&rfr_iscdi=true |