Modeling radiative heating of liquids in microchip reaction chambers

Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2011-06, Vol.167 (2), p.531-536
Hauptverfasser: Phaneuf, Christopher R., Pak, Nikita, Forest, Craig R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 536
container_issue 2
container_start_page 531
container_title Sensors and actuators. A. Physical.
container_volume 167
creator Phaneuf, Christopher R.
Pak, Nikita
Forest, Craig R.
description Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper presents a broadly applicable approach to modeling the thermal response of liquid undergoing radiative heating in microchip reaction chambers by using optical and material properties for analytical and finite element methods. The fidelity of the model is demonstrated with experimental validation for two types of microchips, glass and plastic, and two types of radiative sources, blackbody and monochromatic, revealing root mean square deviations between 1.37 °C and 3.14 °C. By providing an understanding of how a radiative source interacts with a particular device and the resulting transient and steady state behavior, this modeling process can enable designs that maximize the efficiency and cost-effectiveness of a microfluidic heating system. These generalized models are expected to apply to any source, materials, and geometry for which the optical and material properties are known.
doi_str_mv 10.1016/j.sna.2011.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889442426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424711000483</els_id><sourcerecordid>889442426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-7fede8c2c5d99c5ec3f98bdfa1a9c132eb82a7e2f6d62ad00cb31b61799b9ea23</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlxilhbadxLE6oPKUiLnC2HHtDt8qjtVMk_j2uypnTSKuZ0c7H2DWHggOvbjdFHGwhgPMCRAEgTtiM10rmEip9ymagRZmXolTn7CLGDQBIqdSMPbyNHjsavrJgPdmJvjFbY9J0Gduso92efMxoyHpyYXRr2mYBrZtoHDK3tn2DIV6ys9Z2Ea_-dM4-nx4_li_56v35dXm_yp0UespVix5rJ9zCa-0W6GSr68a3llvtuBTY1MIqFG3lK2E9gGskbyqutG40WiHn7ObYuw3jbo9xMj1Fh11nBxz30dS1LtNGUSUnPzrTzzEGbM02UG_Dj-FgDsDMxiRg5gDMgDAJWMrcHTOYJnwTBhMd4eDQU0A3GT_SP-lfMGZ0wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889442426</pqid></control><display><type>article</type><title>Modeling radiative heating of liquids in microchip reaction chambers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Phaneuf, Christopher R. ; Pak, Nikita ; Forest, Craig R.</creator><creatorcontrib>Phaneuf, Christopher R. ; Pak, Nikita ; Forest, Craig R.</creatorcontrib><description>Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper presents a broadly applicable approach to modeling the thermal response of liquid undergoing radiative heating in microchip reaction chambers by using optical and material properties for analytical and finite element methods. The fidelity of the model is demonstrated with experimental validation for two types of microchips, glass and plastic, and two types of radiative sources, blackbody and monochromatic, revealing root mean square deviations between 1.37 °C and 3.14 °C. By providing an understanding of how a radiative source interacts with a particular device and the resulting transient and steady state behavior, this modeling process can enable designs that maximize the efficiency and cost-effectiveness of a microfluidic heating system. These generalized models are expected to apply to any source, materials, and geometry for which the optical and material properties are known.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2011.02.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chambers ; Design engineering ; Finite element ; Heat transfer ; Heating ; Liquids ; Mathematical analysis ; Mathematical models ; Microfluidics ; Optical properties ; Radiative heating ; Temperature control</subject><ispartof>Sensors and actuators. A. Physical., 2011-06, Vol.167 (2), p.531-536</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-7fede8c2c5d99c5ec3f98bdfa1a9c132eb82a7e2f6d62ad00cb31b61799b9ea23</citedby><cites>FETCH-LOGICAL-c329t-7fede8c2c5d99c5ec3f98bdfa1a9c132eb82a7e2f6d62ad00cb31b61799b9ea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2011.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Phaneuf, Christopher R.</creatorcontrib><creatorcontrib>Pak, Nikita</creatorcontrib><creatorcontrib>Forest, Craig R.</creatorcontrib><title>Modeling radiative heating of liquids in microchip reaction chambers</title><title>Sensors and actuators. A. Physical.</title><description>Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper presents a broadly applicable approach to modeling the thermal response of liquid undergoing radiative heating in microchip reaction chambers by using optical and material properties for analytical and finite element methods. The fidelity of the model is demonstrated with experimental validation for two types of microchips, glass and plastic, and two types of radiative sources, blackbody and monochromatic, revealing root mean square deviations between 1.37 °C and 3.14 °C. By providing an understanding of how a radiative source interacts with a particular device and the resulting transient and steady state behavior, this modeling process can enable designs that maximize the efficiency and cost-effectiveness of a microfluidic heating system. These generalized models are expected to apply to any source, materials, and geometry for which the optical and material properties are known.</description><subject>Chambers</subject><subject>Design engineering</subject><subject>Finite element</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microfluidics</subject><subject>Optical properties</subject><subject>Radiative heating</subject><subject>Temperature control</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlxilhbadxLE6oPKUiLnC2HHtDt8qjtVMk_j2uypnTSKuZ0c7H2DWHggOvbjdFHGwhgPMCRAEgTtiM10rmEip9ymagRZmXolTn7CLGDQBIqdSMPbyNHjsavrJgPdmJvjFbY9J0Gduso92efMxoyHpyYXRr2mYBrZtoHDK3tn2DIV6ys9Z2Ea_-dM4-nx4_li_56v35dXm_yp0UespVix5rJ9zCa-0W6GSr68a3llvtuBTY1MIqFG3lK2E9gGskbyqutG40WiHn7ObYuw3jbo9xMj1Fh11nBxz30dS1LtNGUSUnPzrTzzEGbM02UG_Dj-FgDsDMxiRg5gDMgDAJWMrcHTOYJnwTBhMd4eDQU0A3GT_SP-lfMGZ0wA</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Phaneuf, Christopher R.</creator><creator>Pak, Nikita</creator><creator>Forest, Craig R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Modeling radiative heating of liquids in microchip reaction chambers</title><author>Phaneuf, Christopher R. ; Pak, Nikita ; Forest, Craig R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-7fede8c2c5d99c5ec3f98bdfa1a9c132eb82a7e2f6d62ad00cb31b61799b9ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chambers</topic><topic>Design engineering</topic><topic>Finite element</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microfluidics</topic><topic>Optical properties</topic><topic>Radiative heating</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phaneuf, Christopher R.</creatorcontrib><creatorcontrib>Pak, Nikita</creatorcontrib><creatorcontrib>Forest, Craig R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phaneuf, Christopher R.</au><au>Pak, Nikita</au><au>Forest, Craig R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling radiative heating of liquids in microchip reaction chambers</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>167</volume><issue>2</issue><spage>531</spage><epage>536</epage><pages>531-536</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Deterministic design of a microfluidic system that utilizes radiative heating requires accurate thermal modeling. Current modeling methods are limited to describing a subset of the spatial and spectral parameter space and thus cannot be extended to the full range of microchip platforms. This paper presents a broadly applicable approach to modeling the thermal response of liquid undergoing radiative heating in microchip reaction chambers by using optical and material properties for analytical and finite element methods. The fidelity of the model is demonstrated with experimental validation for two types of microchips, glass and plastic, and two types of radiative sources, blackbody and monochromatic, revealing root mean square deviations between 1.37 °C and 3.14 °C. By providing an understanding of how a radiative source interacts with a particular device and the resulting transient and steady state behavior, this modeling process can enable designs that maximize the efficiency and cost-effectiveness of a microfluidic heating system. These generalized models are expected to apply to any source, materials, and geometry for which the optical and material properties are known.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2011.02.002</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2011-06, Vol.167 (2), p.531-536
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_miscellaneous_889442426
source Access via ScienceDirect (Elsevier)
subjects Chambers
Design engineering
Finite element
Heat transfer
Heating
Liquids
Mathematical analysis
Mathematical models
Microfluidics
Optical properties
Radiative heating
Temperature control
title Modeling radiative heating of liquids in microchip reaction chambers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20radiative%20heating%20of%20liquids%20in%20microchip%20reaction%20chambers&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Phaneuf,%20Christopher%20R.&rft.date=2011-06-01&rft.volume=167&rft.issue=2&rft.spage=531&rft.epage=536&rft.pages=531-536&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2011.02.002&rft_dat=%3Cproquest_cross%3E889442426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889442426&rft_id=info:pmid/&rft_els_id=S0924424711000483&rfr_iscdi=true