Impact of “terminal effect” on Cu electrochemical deposition: Filling capability for different metallization options

The 300 mm wafer copper electrochemical deposition (ECD) process for dual damascene metallization of semiconductor advanced interconnects is critically reviewed and the breakthroughs that enable further scaling of this process are examined. Special emphasis is placed on analyzing the critical issues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2011-05, Vol.88 (5), p.754-759
Hauptverfasser: Armini, Silvia, Tokei, Zsolt, Volders, Henny, El-Mekki, Zaid, Radisic, Aleksandar, Beyer, Gerald, Ruythooren, Wouter, Vereecken, Philippe M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 759
container_issue 5
container_start_page 754
container_title Microelectronic engineering
container_volume 88
creator Armini, Silvia
Tokei, Zsolt
Volders, Henny
El-Mekki, Zaid
Radisic, Aleksandar
Beyer, Gerald
Ruythooren, Wouter
Vereecken, Philippe M.
description The 300 mm wafer copper electrochemical deposition (ECD) process for dual damascene metallization of semiconductor advanced interconnects is critically reviewed and the breakthroughs that enable further scaling of this process are examined. Special emphasis is placed on analyzing the critical issues, such as barrier/seed options, terminal effect and future plating prospects for this technology. The smallest plateable feature size values are estimated for different metallization integration schemes, such as conventional Physical Vapor Deposited (PVD) TaN/Ta/Cu, hybrid RuTa/Cu, CuMn (8%) self-forming barrier/seed, and Plasma-Enhanced Atomic Layer Deposition (PEALD) Ru, limiting the allowed maximum sheet resistance to 14 Ohms/sq for the Cu-based seeds and the effective maximum filling aspect ratio to 5–6.
doi_str_mv 10.1016/j.mee.2010.08.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889436913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931710002996</els_id><sourcerecordid>889436913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-96b619db3a890fae3419d1c9f7ebc0fec94c15ed39875e0b1809bf742c989e543</originalsourceid><addsrcrecordid>eNp9kLtOBCEUhonRxHX1AexojNWssMwFtDIbb8kmNloThjkom5lhBNaolQ-iL-eTyLjG0urkD9_5gQ-hQ0pmlNDyZDXrAGZzkjLhM0LZFppQXrGsKEq-jSaJqTLBaLWL9kJYkZRzwifo5aYblI7YGfz1_hHBd7ZXLQZjQMev90_serxYY2hT9E4_Qmd1Om9gcMFG6_pTfGnb1vYPWKtB1ba18RUb53FjU4eHPuIOokrImxp57IZxhH20Y1Qb4OB3TtH95cXd4jpb3l7dLM6Xmc7nRcxEWZdUNDVTXBCjgOUpUS1MBbUm6ZEi17SAhgleFUBqyomoTZXPteACipxN0fGmd_DuaQ0hys4GDW2renDrIDkXOSsFZYmkG1J7F4IHIwdvO-VfJSVylCxXMkmWo2RJuCQ_O0e_7SokL8arXtvwtzjPE1RUI3e24SB99dmCl0Fb6DU01iezsnH2n1u-AT-xlgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889436913</pqid></control><display><type>article</type><title>Impact of “terminal effect” on Cu electrochemical deposition: Filling capability for different metallization options</title><source>Elsevier ScienceDirect Journals</source><creator>Armini, Silvia ; Tokei, Zsolt ; Volders, Henny ; El-Mekki, Zaid ; Radisic, Aleksandar ; Beyer, Gerald ; Ruythooren, Wouter ; Vereecken, Philippe M.</creator><creatorcontrib>Armini, Silvia ; Tokei, Zsolt ; Volders, Henny ; El-Mekki, Zaid ; Radisic, Aleksandar ; Beyer, Gerald ; Ruythooren, Wouter ; Vereecken, Philippe M.</creatorcontrib><description>The 300 mm wafer copper electrochemical deposition (ECD) process for dual damascene metallization of semiconductor advanced interconnects is critically reviewed and the breakthroughs that enable further scaling of this process are examined. Special emphasis is placed on analyzing the critical issues, such as barrier/seed options, terminal effect and future plating prospects for this technology. The smallest plateable feature size values are estimated for different metallization integration schemes, such as conventional Physical Vapor Deposited (PVD) TaN/Ta/Cu, hybrid RuTa/Cu, CuMn (8%) self-forming barrier/seed, and Plasma-Enhanced Atomic Layer Deposition (PEALD) Ru, limiting the allowed maximum sheet resistance to 14 Ohms/sq for the Cu-based seeds and the effective maximum filling aspect ratio to 5–6.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2010.08.013</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Barriers ; Copper ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Design. Technologies. Operation analysis. Testing ; Direct on barrier plating ; Electrodeposition, electroplating ; Electronics ; Exact sciences and technology ; Integrated circuits ; Materials science ; Metallization options ; Metallizing ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; Physical vapor deposition ; Physics ; Seeds ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Terminal effect ; Terminals ; Vapor phase epitaxy; growth from vapor phase</subject><ispartof>Microelectronic engineering, 2011-05, Vol.88 (5), p.754-759</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-96b619db3a890fae3419d1c9f7ebc0fec94c15ed39875e0b1809bf742c989e543</citedby><cites>FETCH-LOGICAL-c425t-96b619db3a890fae3419d1c9f7ebc0fec94c15ed39875e0b1809bf742c989e543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167931710002996$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24013573$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Armini, Silvia</creatorcontrib><creatorcontrib>Tokei, Zsolt</creatorcontrib><creatorcontrib>Volders, Henny</creatorcontrib><creatorcontrib>El-Mekki, Zaid</creatorcontrib><creatorcontrib>Radisic, Aleksandar</creatorcontrib><creatorcontrib>Beyer, Gerald</creatorcontrib><creatorcontrib>Ruythooren, Wouter</creatorcontrib><creatorcontrib>Vereecken, Philippe M.</creatorcontrib><title>Impact of “terminal effect” on Cu electrochemical deposition: Filling capability for different metallization options</title><title>Microelectronic engineering</title><description>The 300 mm wafer copper electrochemical deposition (ECD) process for dual damascene metallization of semiconductor advanced interconnects is critically reviewed and the breakthroughs that enable further scaling of this process are examined. Special emphasis is placed on analyzing the critical issues, such as barrier/seed options, terminal effect and future plating prospects for this technology. The smallest plateable feature size values are estimated for different metallization integration schemes, such as conventional Physical Vapor Deposited (PVD) TaN/Ta/Cu, hybrid RuTa/Cu, CuMn (8%) self-forming barrier/seed, and Plasma-Enhanced Atomic Layer Deposition (PEALD) Ru, limiting the allowed maximum sheet resistance to 14 Ohms/sq for the Cu-based seeds and the effective maximum filling aspect ratio to 5–6.</description><subject>Applied sciences</subject><subject>Barriers</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Direct on barrier plating</subject><subject>Electrodeposition, electroplating</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Materials science</subject><subject>Metallization options</subject><subject>Metallizing</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Physical vapor deposition</subject><subject>Physics</subject><subject>Seeds</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Terminal effect</subject><subject>Terminals</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOBCEUhonRxHX1AexojNWssMwFtDIbb8kmNloThjkom5lhBNaolQ-iL-eTyLjG0urkD9_5gQ-hQ0pmlNDyZDXrAGZzkjLhM0LZFppQXrGsKEq-jSaJqTLBaLWL9kJYkZRzwifo5aYblI7YGfz1_hHBd7ZXLQZjQMev90_serxYY2hT9E4_Qmd1Om9gcMFG6_pTfGnb1vYPWKtB1ba18RUb53FjU4eHPuIOokrImxp57IZxhH20Y1Qb4OB3TtH95cXd4jpb3l7dLM6Xmc7nRcxEWZdUNDVTXBCjgOUpUS1MBbUm6ZEi17SAhgleFUBqyomoTZXPteACipxN0fGmd_DuaQ0hys4GDW2renDrIDkXOSsFZYmkG1J7F4IHIwdvO-VfJSVylCxXMkmWo2RJuCQ_O0e_7SokL8arXtvwtzjPE1RUI3e24SB99dmCl0Fb6DU01iezsnH2n1u-AT-xlgs</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Armini, Silvia</creator><creator>Tokei, Zsolt</creator><creator>Volders, Henny</creator><creator>El-Mekki, Zaid</creator><creator>Radisic, Aleksandar</creator><creator>Beyer, Gerald</creator><creator>Ruythooren, Wouter</creator><creator>Vereecken, Philippe M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Impact of “terminal effect” on Cu electrochemical deposition: Filling capability for different metallization options</title><author>Armini, Silvia ; Tokei, Zsolt ; Volders, Henny ; El-Mekki, Zaid ; Radisic, Aleksandar ; Beyer, Gerald ; Ruythooren, Wouter ; Vereecken, Philippe M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-96b619db3a890fae3419d1c9f7ebc0fec94c15ed39875e0b1809bf742c989e543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Barriers</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Direct on barrier plating</topic><topic>Electrodeposition, electroplating</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Materials science</topic><topic>Metallization options</topic><topic>Metallizing</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Physical vapor deposition</topic><topic>Physics</topic><topic>Seeds</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Terminal effect</topic><topic>Terminals</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armini, Silvia</creatorcontrib><creatorcontrib>Tokei, Zsolt</creatorcontrib><creatorcontrib>Volders, Henny</creatorcontrib><creatorcontrib>El-Mekki, Zaid</creatorcontrib><creatorcontrib>Radisic, Aleksandar</creatorcontrib><creatorcontrib>Beyer, Gerald</creatorcontrib><creatorcontrib>Ruythooren, Wouter</creatorcontrib><creatorcontrib>Vereecken, Philippe M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armini, Silvia</au><au>Tokei, Zsolt</au><au>Volders, Henny</au><au>El-Mekki, Zaid</au><au>Radisic, Aleksandar</au><au>Beyer, Gerald</au><au>Ruythooren, Wouter</au><au>Vereecken, Philippe M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of “terminal effect” on Cu electrochemical deposition: Filling capability for different metallization options</atitle><jtitle>Microelectronic engineering</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>88</volume><issue>5</issue><spage>754</spage><epage>759</epage><pages>754-759</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>The 300 mm wafer copper electrochemical deposition (ECD) process for dual damascene metallization of semiconductor advanced interconnects is critically reviewed and the breakthroughs that enable further scaling of this process are examined. Special emphasis is placed on analyzing the critical issues, such as barrier/seed options, terminal effect and future plating prospects for this technology. The smallest plateable feature size values are estimated for different metallization integration schemes, such as conventional Physical Vapor Deposited (PVD) TaN/Ta/Cu, hybrid RuTa/Cu, CuMn (8%) self-forming barrier/seed, and Plasma-Enhanced Atomic Layer Deposition (PEALD) Ru, limiting the allowed maximum sheet resistance to 14 Ohms/sq for the Cu-based seeds and the effective maximum filling aspect ratio to 5–6.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2010.08.013</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2011-05, Vol.88 (5), p.754-759
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_889436913
source Elsevier ScienceDirect Journals
subjects Applied sciences
Barriers
Copper
Cross-disciplinary physics: materials science
rheology
Deposition
Design. Technologies. Operation analysis. Testing
Direct on barrier plating
Electrodeposition, electroplating
Electronics
Exact sciences and technology
Integrated circuits
Materials science
Metallization options
Metallizing
Methods of deposition of films and coatings
film growth and epitaxy
Microelectronic fabrication (materials and surfaces technology)
Physical vapor deposition
Physics
Seeds
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Terminal effect
Terminals
Vapor phase epitaxy
growth from vapor phase
title Impact of “terminal effect” on Cu electrochemical deposition: Filling capability for different metallization options
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20%E2%80%9Cterminal%20effect%E2%80%9D%20on%20Cu%20electrochemical%20deposition:%20Filling%20capability%20for%20different%20metallization%20options&rft.jtitle=Microelectronic%20engineering&rft.au=Armini,%20Silvia&rft.date=2011-05-01&rft.volume=88&rft.issue=5&rft.spage=754&rft.epage=759&rft.pages=754-759&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2010.08.013&rft_dat=%3Cproquest_cross%3E889436913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889436913&rft_id=info:pmid/&rft_els_id=S0167931710002996&rfr_iscdi=true