An effective memetic differential evolution algorithm based on chaotic local search

This paper proposes an effective memetic differential evolution (DE) algorithm, or DECLS, that utilizes a chaotic local search (CLS) with a ‘shrinking’ strategy. The CLS helps to improve the optimizing performance of the canonical DE by exploring a huge search space in the early run phase to avoid p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2011-08, Vol.181 (15), p.3175-3187
Hauptverfasser: Jia, Dongli, Zheng, Guoxin, Khurram Khan, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3187
container_issue 15
container_start_page 3175
container_title Information sciences
container_volume 181
creator Jia, Dongli
Zheng, Guoxin
Khurram Khan, Muhammad
description This paper proposes an effective memetic differential evolution (DE) algorithm, or DECLS, that utilizes a chaotic local search (CLS) with a ‘shrinking’ strategy. The CLS helps to improve the optimizing performance of the canonical DE by exploring a huge search space in the early run phase to avoid premature convergence, and exploiting a small region in the later run phase to refine the final solutions. Moreover, the parameter settings of the DECLS are controlled in an adaptive manner to further enhance the search ability. To evaluate the effectiveness and efficiency of the proposed DECLS algorithm, we compared it with four state-of-the-art DE variants and the IPOP-CMA-ES algorithm on a set of 20 selected benchmark functions. Results show that the DECLS is significantly better than, or at least comparable to, the other optimizers in terms of convergence performance and solution accuracy. Besides, the DECLS has also shown certain advantages in solving high dimensional problems.
doi_str_mv 10.1016/j.ins.2011.03.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889436139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025511001472</els_id><sourcerecordid>889436139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d734101e9eb37f23d1e1abd90f09b795491903a3cae5e0329b562b55944502093</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhj2ARPn4AWzemBLOcZzUYqoqvqRKDMBsOfaFukriYruV-Pc4KjPTSa_e53T3EHLLoGTAmvtd6aZYVsBYCbwEtjwjC4AKCqiEuCCXMe4AoG6bZkHeVxPFvkeT3BHpiCMmZ6h1OQo4JacHikc_HJLzE9XDlw8ubUfa6YiW5shstZ-JwZtcjaiD2V6T814PEW_-5hX5fHr8WL8Um7fn1_VqUxguRSpsy-t8L0rseNtX3DJkurMSepBdK0UtmQSuudEoEHglO9FUnRCyrkX-RvIrcnfauw_--4AxqdFFg8OgJ_SHqJZLWfOG8bnJTk0TfIwBe7UPbtThRzFQszO1U9mZmp0p4Co7y8zDicH8wtFhUNE4nAxaF7IuZb37h_4Fpoh2Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889436139</pqid></control><display><type>article</type><title>An effective memetic differential evolution algorithm based on chaotic local search</title><source>Elsevier ScienceDirect Journals</source><creator>Jia, Dongli ; Zheng, Guoxin ; Khurram Khan, Muhammad</creator><creatorcontrib>Jia, Dongli ; Zheng, Guoxin ; Khurram Khan, Muhammad</creatorcontrib><description>This paper proposes an effective memetic differential evolution (DE) algorithm, or DECLS, that utilizes a chaotic local search (CLS) with a ‘shrinking’ strategy. The CLS helps to improve the optimizing performance of the canonical DE by exploring a huge search space in the early run phase to avoid premature convergence, and exploiting a small region in the later run phase to refine the final solutions. Moreover, the parameter settings of the DECLS are controlled in an adaptive manner to further enhance the search ability. To evaluate the effectiveness and efficiency of the proposed DECLS algorithm, we compared it with four state-of-the-art DE variants and the IPOP-CMA-ES algorithm on a set of 20 selected benchmark functions. Results show that the DECLS is significantly better than, or at least comparable to, the other optimizers in terms of convergence performance and solution accuracy. Besides, the DECLS has also shown certain advantages in solving high dimensional problems.</description><identifier>ISSN: 0020-0255</identifier><identifier>DOI: 10.1016/j.ins.2011.03.018</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adaptive control systems ; Algorithms ; Chaos theory ; Convergence ; Evolution ; Optimization ; Searching ; Strategy</subject><ispartof>Information sciences, 2011-08, Vol.181 (15), p.3175-3187</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d734101e9eb37f23d1e1abd90f09b795491903a3cae5e0329b562b55944502093</citedby><cites>FETCH-LOGICAL-c395t-d734101e9eb37f23d1e1abd90f09b795491903a3cae5e0329b562b55944502093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025511001472$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jia, Dongli</creatorcontrib><creatorcontrib>Zheng, Guoxin</creatorcontrib><creatorcontrib>Khurram Khan, Muhammad</creatorcontrib><title>An effective memetic differential evolution algorithm based on chaotic local search</title><title>Information sciences</title><description>This paper proposes an effective memetic differential evolution (DE) algorithm, or DECLS, that utilizes a chaotic local search (CLS) with a ‘shrinking’ strategy. The CLS helps to improve the optimizing performance of the canonical DE by exploring a huge search space in the early run phase to avoid premature convergence, and exploiting a small region in the later run phase to refine the final solutions. Moreover, the parameter settings of the DECLS are controlled in an adaptive manner to further enhance the search ability. To evaluate the effectiveness and efficiency of the proposed DECLS algorithm, we compared it with four state-of-the-art DE variants and the IPOP-CMA-ES algorithm on a set of 20 selected benchmark functions. Results show that the DECLS is significantly better than, or at least comparable to, the other optimizers in terms of convergence performance and solution accuracy. Besides, the DECLS has also shown certain advantages in solving high dimensional problems.</description><subject>Adaptive control systems</subject><subject>Algorithms</subject><subject>Chaos theory</subject><subject>Convergence</subject><subject>Evolution</subject><subject>Optimization</subject><subject>Searching</subject><subject>Strategy</subject><issn>0020-0255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhj2ARPn4AWzemBLOcZzUYqoqvqRKDMBsOfaFukriYruV-Pc4KjPTSa_e53T3EHLLoGTAmvtd6aZYVsBYCbwEtjwjC4AKCqiEuCCXMe4AoG6bZkHeVxPFvkeT3BHpiCMmZ6h1OQo4JacHikc_HJLzE9XDlw8ubUfa6YiW5shstZ-JwZtcjaiD2V6T814PEW_-5hX5fHr8WL8Um7fn1_VqUxguRSpsy-t8L0rseNtX3DJkurMSepBdK0UtmQSuudEoEHglO9FUnRCyrkX-RvIrcnfauw_--4AxqdFFg8OgJ_SHqJZLWfOG8bnJTk0TfIwBe7UPbtThRzFQszO1U9mZmp0p4Co7y8zDicH8wtFhUNE4nAxaF7IuZb37h_4Fpoh2Vg</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Jia, Dongli</creator><creator>Zheng, Guoxin</creator><creator>Khurram Khan, Muhammad</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>An effective memetic differential evolution algorithm based on chaotic local search</title><author>Jia, Dongli ; Zheng, Guoxin ; Khurram Khan, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d734101e9eb37f23d1e1abd90f09b795491903a3cae5e0329b562b55944502093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive control systems</topic><topic>Algorithms</topic><topic>Chaos theory</topic><topic>Convergence</topic><topic>Evolution</topic><topic>Optimization</topic><topic>Searching</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Dongli</creatorcontrib><creatorcontrib>Zheng, Guoxin</creatorcontrib><creatorcontrib>Khurram Khan, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Dongli</au><au>Zheng, Guoxin</au><au>Khurram Khan, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective memetic differential evolution algorithm based on chaotic local search</atitle><jtitle>Information sciences</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>181</volume><issue>15</issue><spage>3175</spage><epage>3187</epage><pages>3175-3187</pages><issn>0020-0255</issn><abstract>This paper proposes an effective memetic differential evolution (DE) algorithm, or DECLS, that utilizes a chaotic local search (CLS) with a ‘shrinking’ strategy. The CLS helps to improve the optimizing performance of the canonical DE by exploring a huge search space in the early run phase to avoid premature convergence, and exploiting a small region in the later run phase to refine the final solutions. Moreover, the parameter settings of the DECLS are controlled in an adaptive manner to further enhance the search ability. To evaluate the effectiveness and efficiency of the proposed DECLS algorithm, we compared it with four state-of-the-art DE variants and the IPOP-CMA-ES algorithm on a set of 20 selected benchmark functions. Results show that the DECLS is significantly better than, or at least comparable to, the other optimizers in terms of convergence performance and solution accuracy. Besides, the DECLS has also shown certain advantages in solving high dimensional problems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2011.03.018</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2011-08, Vol.181 (15), p.3175-3187
issn 0020-0255
language eng
recordid cdi_proquest_miscellaneous_889436139
source Elsevier ScienceDirect Journals
subjects Adaptive control systems
Algorithms
Chaos theory
Convergence
Evolution
Optimization
Searching
Strategy
title An effective memetic differential evolution algorithm based on chaotic local search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20memetic%20differential%20evolution%20algorithm%20based%20on%20chaotic%20local%20search&rft.jtitle=Information%20sciences&rft.au=Jia,%20Dongli&rft.date=2011-08-01&rft.volume=181&rft.issue=15&rft.spage=3175&rft.epage=3187&rft.pages=3175-3187&rft.issn=0020-0255&rft_id=info:doi/10.1016/j.ins.2011.03.018&rft_dat=%3Cproquest_cross%3E889436139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889436139&rft_id=info:pmid/&rft_els_id=S0020025511001472&rfr_iscdi=true