Fluorescent dye adsorption on nanocarbon substrates through electrostatic interactions

Nanodiamonds (NDs) with modified surface functional groups and surface characteristics are an attractive model to understand adsorption mechanisms of molecules on substrates. The research described in this paper illustrates the binding mechanisms of fluorescent dyes to ND surfaces as these interacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2010-02, Vol.19 (2), p.234-237
Hauptverfasser: Gibson, N.M., Luo, T.J.M., Shenderova, O., Choi, Y.J., Fitzgerald, Z., Brenner, D.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 2
container_start_page 234
container_title Diamond and related materials
container_volume 19
creator Gibson, N.M.
Luo, T.J.M.
Shenderova, O.
Choi, Y.J.
Fitzgerald, Z.
Brenner, D.W.
description Nanodiamonds (NDs) with modified surface functional groups and surface characteristics are an attractive model to understand adsorption mechanisms of molecules on substrates. The research described in this paper illustrates the binding mechanisms of fluorescent dyes to ND surfaces as these interactions are extremely useful in many biomedical ND applications. A thorough study of binding and release mechanisms was completed using an assortment of carbon based nanoparticles, including NDs, onion-like carbon, and single-wall nanohorns. Surface charge interactions were studied in combination with surface areas, configurations, and modifications in order to determine which is responsible for the largest adsorption capacity and strongest binding. Adsorption studies were carried out using UV–Vis measurements followed by maximum binding capacity determination using the Langmuir isotherm and related transform equations. Langmuir and transform calculations further reveal the specific surface area covered by adsorbents for select nanocarbon materials. In addition, cyclic voltammetry measurements confirm that dye adsorbed onto NDs exhibits equal electrochemical properties as in its unbound state.
doi_str_mv 10.1016/j.diamond.2009.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889428920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963509002805</els_id><sourcerecordid>889428920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-ce5f20557599d1062163123857a89151064133c4f5ea900499367bef5cab48ab3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD5-gtCNuOqYR9M2KxFxVBhwo27DbXrrZOgkY5IK_nszzOBWCNxwOOc-PkKuGJ0zyurb9by3sPGun3NKVdbmlMojMmNto0pKa35MZlRxWapayFNyFuOaUsZVxWbkYzFOPmA06FLR_2ABffRhm6x3RX4OnDcQuvyNUxdTgISxSKvgp89VgSOaFHxMkKwprEsYwOyi8YKcDDBGvDzUc_K-eHx7eC6Xr08vD_fL0oiGpdKgHDiVspFK9SxvymrBuGhlA61iMisVE8JUg0RQlFZKibrpcJAGuqqFTpyTm33fbfBfE8akNzbfMo7g0E9Rt62qeKs4zU65d5q8cAw46G2wGwg_mlG9w6jX-oBR7zDu5Iwx564PEyAaGIcAztj4F-a8Eoo1Kvvu9j7M535bDDoai85gb0OmpHtv_5n0CxLoi_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889428920</pqid></control><display><type>article</type><title>Fluorescent dye adsorption on nanocarbon substrates through electrostatic interactions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gibson, N.M. ; Luo, T.J.M. ; Shenderova, O. ; Choi, Y.J. ; Fitzgerald, Z. ; Brenner, D.W.</creator><creatorcontrib>Gibson, N.M. ; Luo, T.J.M. ; Shenderova, O. ; Choi, Y.J. ; Fitzgerald, Z. ; Brenner, D.W.</creatorcontrib><description>Nanodiamonds (NDs) with modified surface functional groups and surface characteristics are an attractive model to understand adsorption mechanisms of molecules on substrates. The research described in this paper illustrates the binding mechanisms of fluorescent dyes to ND surfaces as these interactions are extremely useful in many biomedical ND applications. A thorough study of binding and release mechanisms was completed using an assortment of carbon based nanoparticles, including NDs, onion-like carbon, and single-wall nanohorns. Surface charge interactions were studied in combination with surface areas, configurations, and modifications in order to determine which is responsible for the largest adsorption capacity and strongest binding. Adsorption studies were carried out using UV–Vis measurements followed by maximum binding capacity determination using the Langmuir isotherm and related transform equations. Langmuir and transform calculations further reveal the specific surface area covered by adsorbents for select nanocarbon materials. In addition, cyclic voltammetry measurements confirm that dye adsorbed onto NDs exhibits equal electrochemical properties as in its unbound state.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2009.10.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Binding ; Biomaterial ; Carbon ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Materials science ; Mathematical models ; Nanocomposites ; Nanodiamond ; Nanomaterials ; Nanoparticle ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Other topics in nanoscale materials and structures ; Physics ; Solid surfaces and solid-solid interfaces ; Specific materials ; Surface chemistry ; Surface modification ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Diamond and related materials, 2010-02, Vol.19 (2), p.234-237</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-ce5f20557599d1062163123857a89151064133c4f5ea900499367bef5cab48ab3</citedby><cites>FETCH-LOGICAL-c371t-ce5f20557599d1062163123857a89151064133c4f5ea900499367bef5cab48ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2009.10.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3548,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22439179$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gibson, N.M.</creatorcontrib><creatorcontrib>Luo, T.J.M.</creatorcontrib><creatorcontrib>Shenderova, O.</creatorcontrib><creatorcontrib>Choi, Y.J.</creatorcontrib><creatorcontrib>Fitzgerald, Z.</creatorcontrib><creatorcontrib>Brenner, D.W.</creatorcontrib><title>Fluorescent dye adsorption on nanocarbon substrates through electrostatic interactions</title><title>Diamond and related materials</title><description>Nanodiamonds (NDs) with modified surface functional groups and surface characteristics are an attractive model to understand adsorption mechanisms of molecules on substrates. The research described in this paper illustrates the binding mechanisms of fluorescent dyes to ND surfaces as these interactions are extremely useful in many biomedical ND applications. A thorough study of binding and release mechanisms was completed using an assortment of carbon based nanoparticles, including NDs, onion-like carbon, and single-wall nanohorns. Surface charge interactions were studied in combination with surface areas, configurations, and modifications in order to determine which is responsible for the largest adsorption capacity and strongest binding. Adsorption studies were carried out using UV–Vis measurements followed by maximum binding capacity determination using the Langmuir isotherm and related transform equations. Langmuir and transform calculations further reveal the specific surface area covered by adsorbents for select nanocarbon materials. In addition, cyclic voltammetry measurements confirm that dye adsorbed onto NDs exhibits equal electrochemical properties as in its unbound state.</description><subject>Adsorption</subject><subject>Binding</subject><subject>Biomaterial</subject><subject>Carbon</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanodiamond</subject><subject>Nanomaterials</subject><subject>Nanoparticle</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Specific materials</subject><subject>Surface chemistry</subject><subject>Surface modification</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD5-gtCNuOqYR9M2KxFxVBhwo27DbXrrZOgkY5IK_nszzOBWCNxwOOc-PkKuGJ0zyurb9by3sPGun3NKVdbmlMojMmNto0pKa35MZlRxWapayFNyFuOaUsZVxWbkYzFOPmA06FLR_2ABffRhm6x3RX4OnDcQuvyNUxdTgISxSKvgp89VgSOaFHxMkKwprEsYwOyi8YKcDDBGvDzUc_K-eHx7eC6Xr08vD_fL0oiGpdKgHDiVspFK9SxvymrBuGhlA61iMisVE8JUg0RQlFZKibrpcJAGuqqFTpyTm33fbfBfE8akNzbfMo7g0E9Rt62qeKs4zU65d5q8cAw46G2wGwg_mlG9w6jX-oBR7zDu5Iwx564PEyAaGIcAztj4F-a8Eoo1Kvvu9j7M535bDDoai85gb0OmpHtv_5n0CxLoi_w</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Gibson, N.M.</creator><creator>Luo, T.J.M.</creator><creator>Shenderova, O.</creator><creator>Choi, Y.J.</creator><creator>Fitzgerald, Z.</creator><creator>Brenner, D.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100201</creationdate><title>Fluorescent dye adsorption on nanocarbon substrates through electrostatic interactions</title><author>Gibson, N.M. ; Luo, T.J.M. ; Shenderova, O. ; Choi, Y.J. ; Fitzgerald, Z. ; Brenner, D.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-ce5f20557599d1062163123857a89151064133c4f5ea900499367bef5cab48ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Binding</topic><topic>Biomaterial</topic><topic>Carbon</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanodiamond</topic><topic>Nanomaterials</topic><topic>Nanoparticle</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Specific materials</topic><topic>Surface chemistry</topic><topic>Surface modification</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibson, N.M.</creatorcontrib><creatorcontrib>Luo, T.J.M.</creatorcontrib><creatorcontrib>Shenderova, O.</creatorcontrib><creatorcontrib>Choi, Y.J.</creatorcontrib><creatorcontrib>Fitzgerald, Z.</creatorcontrib><creatorcontrib>Brenner, D.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibson, N.M.</au><au>Luo, T.J.M.</au><au>Shenderova, O.</au><au>Choi, Y.J.</au><au>Fitzgerald, Z.</au><au>Brenner, D.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescent dye adsorption on nanocarbon substrates through electrostatic interactions</atitle><jtitle>Diamond and related materials</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>19</volume><issue>2</issue><spage>234</spage><epage>237</epage><pages>234-237</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>Nanodiamonds (NDs) with modified surface functional groups and surface characteristics are an attractive model to understand adsorption mechanisms of molecules on substrates. The research described in this paper illustrates the binding mechanisms of fluorescent dyes to ND surfaces as these interactions are extremely useful in many biomedical ND applications. A thorough study of binding and release mechanisms was completed using an assortment of carbon based nanoparticles, including NDs, onion-like carbon, and single-wall nanohorns. Surface charge interactions were studied in combination with surface areas, configurations, and modifications in order to determine which is responsible for the largest adsorption capacity and strongest binding. Adsorption studies were carried out using UV–Vis measurements followed by maximum binding capacity determination using the Langmuir isotherm and related transform equations. Langmuir and transform calculations further reveal the specific surface area covered by adsorbents for select nanocarbon materials. In addition, cyclic voltammetry measurements confirm that dye adsorbed onto NDs exhibits equal electrochemical properties as in its unbound state.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2009.10.005</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2010-02, Vol.19 (2), p.234-237
issn 0925-9635
1879-0062
language eng
recordid cdi_proquest_miscellaneous_889428920
source Elsevier ScienceDirect Journals Complete
subjects Adsorption
Binding
Biomaterial
Carbon
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Materials science
Mathematical models
Nanocomposites
Nanodiamond
Nanomaterials
Nanoparticle
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Other topics in nanoscale materials and structures
Physics
Solid surfaces and solid-solid interfaces
Specific materials
Surface chemistry
Surface modification
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Fluorescent dye adsorption on nanocarbon substrates through electrostatic interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescent%20dye%20adsorption%20on%20nanocarbon%20substrates%20through%20electrostatic%20interactions&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Gibson,%20N.M.&rft.date=2010-02-01&rft.volume=19&rft.issue=2&rft.spage=234&rft.epage=237&rft.pages=234-237&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2009.10.005&rft_dat=%3Cproquest_cross%3E889428920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889428920&rft_id=info:pmid/&rft_els_id=S0925963509002805&rfr_iscdi=true