Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation
The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundar...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2011-07, Vol.115 (1), p.63-74 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Acta applicandae mathematicae |
container_volume | 115 |
creator | Alstrøm, Tommy Sonne Sørensen, Mads Peter Pedersen, Niels Falsig Madsen, Søren |
description | The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor. |
doi_str_mv | 10.1007/s10440-010-9580-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889423450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889423450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-3a5b72af4cee0207bbaef64e5a7c91dcf3fcb5db668c75ed2964b61c0ab90b443</originalsourceid><addsrcrecordid>eNp1kU-L1DAYh4MoOK5-AG_Bi6e4b9o0TY8y7o4DIx52PIckfTt2aZNu_siOn94uIwgLnt7L8_x44SHkPYdPHKC9ThyEAAYcWNcoYOoF2fCmrVgHtXxJNsBlyxTw7jV5k9I9ANSdlBvy65s5ecyjo7dTeaSH0WOio6fbMC8TPtIdhhlzPNPjeUG239O7smB0wffF5RATvculH7Gn9kzzT6THcUb6BRf0PfpMd6P_bUs8sYPxvSn05qGYPAb_lrwazJTw3d97RX7c3hy3X9nh-26__XxgTjQys9o0tq3MIBwiVNBaa3CQAhvTuo73bqgHZ5veSqlc22BfdVJYyR0Y24EVor4iHy-7SwwPBVPW85gcTpPxGErSSnWiqkUDK_nhGXkfSvTrc1q1NedKtXKF-AVyMaQUcdBLHGcTz5qDfuqgLx302kE_ddBqdaqLk1bWnzD-G_6_9AcJDIx1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873118876</pqid></control><display><type>article</type><title>Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation</title><source>SpringerLink Journals</source><creator>Alstrøm, Tommy Sonne ; Sørensen, Mads Peter ; Pedersen, Niels Falsig ; Madsen, Søren</creator><creatorcontrib>Alstrøm, Tommy Sonne ; Sørensen, Mads Peter ; Pedersen, Niels Falsig ; Madsen, Søren</creatorcontrib><description>The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-010-9580-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Boundaries ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Defects ; Finite element analysis ; Fluid flow ; Geometry ; Investigations ; Magnetic flux ; Magnetism ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Phase transitions ; Probability Theory and Stochastic Processes ; Retarding ; Studies ; Superconductivity ; Superconductors ; Vortices</subject><ispartof>Acta applicandae mathematicae, 2011-07, Vol.115 (1), p.63-74</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-3a5b72af4cee0207bbaef64e5a7c91dcf3fcb5db668c75ed2964b61c0ab90b443</citedby><cites>FETCH-LOGICAL-c456t-3a5b72af4cee0207bbaef64e5a7c91dcf3fcb5db668c75ed2964b61c0ab90b443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-010-9580-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-010-9580-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alstrøm, Tommy Sonne</creatorcontrib><creatorcontrib>Sørensen, Mads Peter</creatorcontrib><creatorcontrib>Pedersen, Niels Falsig</creatorcontrib><creatorcontrib>Madsen, Søren</creatorcontrib><title>Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.</description><subject>Applications of Mathematics</subject><subject>Boundaries</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Defects</subject><subject>Finite element analysis</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Investigations</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Phase transitions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Retarding</subject><subject>Studies</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Vortices</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU-L1DAYh4MoOK5-AG_Bi6e4b9o0TY8y7o4DIx52PIckfTt2aZNu_siOn94uIwgLnt7L8_x44SHkPYdPHKC9ThyEAAYcWNcoYOoF2fCmrVgHtXxJNsBlyxTw7jV5k9I9ANSdlBvy65s5ecyjo7dTeaSH0WOio6fbMC8TPtIdhhlzPNPjeUG239O7smB0wffF5RATvculH7Gn9kzzT6THcUb6BRf0PfpMd6P_bUs8sYPxvSn05qGYPAb_lrwazJTw3d97RX7c3hy3X9nh-26__XxgTjQys9o0tq3MIBwiVNBaa3CQAhvTuo73bqgHZ5veSqlc22BfdVJYyR0Y24EVor4iHy-7SwwPBVPW85gcTpPxGErSSnWiqkUDK_nhGXkfSvTrc1q1NedKtXKF-AVyMaQUcdBLHGcTz5qDfuqgLx302kE_ddBqdaqLk1bWnzD-G_6_9AcJDIx1</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Alstrøm, Tommy Sonne</creator><creator>Sørensen, Mads Peter</creator><creator>Pedersen, Niels Falsig</creator><creator>Madsen, Søren</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110701</creationdate><title>Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation</title><author>Alstrøm, Tommy Sonne ; Sørensen, Mads Peter ; Pedersen, Niels Falsig ; Madsen, Søren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-3a5b72af4cee0207bbaef64e5a7c91dcf3fcb5db668c75ed2964b61c0ab90b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applications of Mathematics</topic><topic>Boundaries</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Defects</topic><topic>Finite element analysis</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Investigations</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Phase transitions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Retarding</topic><topic>Studies</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alstrøm, Tommy Sonne</creatorcontrib><creatorcontrib>Sørensen, Mads Peter</creatorcontrib><creatorcontrib>Pedersen, Niels Falsig</creatorcontrib><creatorcontrib>Madsen, Søren</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alstrøm, Tommy Sonne</au><au>Sørensen, Mads Peter</au><au>Pedersen, Niels Falsig</au><au>Madsen, Søren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>115</volume><issue>1</issue><spage>63</spage><epage>74</epage><pages>63-74</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-010-9580-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2011-07, Vol.115 (1), p.63-74 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_proquest_miscellaneous_889423450 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Boundaries Calculus of Variations and Optimal Control Optimization Computational Mathematics and Numerical Analysis Defects Finite element analysis Fluid flow Geometry Investigations Magnetic flux Magnetism Mathematical analysis Mathematics Mathematics and Statistics Partial Differential Equations Phase transitions Probability Theory and Stochastic Processes Retarding Studies Superconductivity Superconductors Vortices |
title | Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Flux%20Lines%20in%20Complex%20Geometry%20Type-II%20Superconductors%20Studied%20by%20the%20Time%20Dependent%20Ginzburg-Landau%20Equation&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Alstr%C3%B8m,%20Tommy%20Sonne&rft.date=2011-07-01&rft.volume=115&rft.issue=1&rft.spage=63&rft.epage=74&rft.pages=63-74&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-010-9580-8&rft_dat=%3Cproquest_cross%3E889423450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873118876&rft_id=info:pmid/&rfr_iscdi=true |