Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation

The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2011-07, Vol.115 (1), p.63-74
Hauptverfasser: Alstrøm, Tommy Sonne, Sørensen, Mads Peter, Pedersen, Niels Falsig, Madsen, Søren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 63
container_title Acta applicandae mathematicae
container_volume 115
creator Alstrøm, Tommy Sonne
Sørensen, Mads Peter
Pedersen, Niels Falsig
Madsen, Søren
description The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.
doi_str_mv 10.1007/s10440-010-9580-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889423450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889423450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-3a5b72af4cee0207bbaef64e5a7c91dcf3fcb5db668c75ed2964b61c0ab90b443</originalsourceid><addsrcrecordid>eNp1kU-L1DAYh4MoOK5-AG_Bi6e4b9o0TY8y7o4DIx52PIckfTt2aZNu_siOn94uIwgLnt7L8_x44SHkPYdPHKC9ThyEAAYcWNcoYOoF2fCmrVgHtXxJNsBlyxTw7jV5k9I9ANSdlBvy65s5ecyjo7dTeaSH0WOio6fbMC8TPtIdhhlzPNPjeUG239O7smB0wffF5RATvculH7Gn9kzzT6THcUb6BRf0PfpMd6P_bUs8sYPxvSn05qGYPAb_lrwazJTw3d97RX7c3hy3X9nh-26__XxgTjQys9o0tq3MIBwiVNBaa3CQAhvTuo73bqgHZ5veSqlc22BfdVJYyR0Y24EVor4iHy-7SwwPBVPW85gcTpPxGErSSnWiqkUDK_nhGXkfSvTrc1q1NedKtXKF-AVyMaQUcdBLHGcTz5qDfuqgLx302kE_ddBqdaqLk1bWnzD-G_6_9AcJDIx1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873118876</pqid></control><display><type>article</type><title>Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation</title><source>SpringerLink Journals</source><creator>Alstrøm, Tommy Sonne ; Sørensen, Mads Peter ; Pedersen, Niels Falsig ; Madsen, Søren</creator><creatorcontrib>Alstrøm, Tommy Sonne ; Sørensen, Mads Peter ; Pedersen, Niels Falsig ; Madsen, Søren</creatorcontrib><description>The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-010-9580-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Boundaries ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Defects ; Finite element analysis ; Fluid flow ; Geometry ; Investigations ; Magnetic flux ; Magnetism ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Phase transitions ; Probability Theory and Stochastic Processes ; Retarding ; Studies ; Superconductivity ; Superconductors ; Vortices</subject><ispartof>Acta applicandae mathematicae, 2011-07, Vol.115 (1), p.63-74</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-3a5b72af4cee0207bbaef64e5a7c91dcf3fcb5db668c75ed2964b61c0ab90b443</citedby><cites>FETCH-LOGICAL-c456t-3a5b72af4cee0207bbaef64e5a7c91dcf3fcb5db668c75ed2964b61c0ab90b443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-010-9580-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-010-9580-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alstrøm, Tommy Sonne</creatorcontrib><creatorcontrib>Sørensen, Mads Peter</creatorcontrib><creatorcontrib>Pedersen, Niels Falsig</creatorcontrib><creatorcontrib>Madsen, Søren</creatorcontrib><title>Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.</description><subject>Applications of Mathematics</subject><subject>Boundaries</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Defects</subject><subject>Finite element analysis</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Investigations</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Phase transitions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Retarding</subject><subject>Studies</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Vortices</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU-L1DAYh4MoOK5-AG_Bi6e4b9o0TY8y7o4DIx52PIckfTt2aZNu_siOn94uIwgLnt7L8_x44SHkPYdPHKC9ThyEAAYcWNcoYOoF2fCmrVgHtXxJNsBlyxTw7jV5k9I9ANSdlBvy65s5ecyjo7dTeaSH0WOio6fbMC8TPtIdhhlzPNPjeUG239O7smB0wffF5RATvculH7Gn9kzzT6THcUb6BRf0PfpMd6P_bUs8sYPxvSn05qGYPAb_lrwazJTw3d97RX7c3hy3X9nh-26__XxgTjQys9o0tq3MIBwiVNBaa3CQAhvTuo73bqgHZ5veSqlc22BfdVJYyR0Y24EVor4iHy-7SwwPBVPW85gcTpPxGErSSnWiqkUDK_nhGXkfSvTrc1q1NedKtXKF-AVyMaQUcdBLHGcTz5qDfuqgLx302kE_ddBqdaqLk1bWnzD-G_6_9AcJDIx1</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Alstrøm, Tommy Sonne</creator><creator>Sørensen, Mads Peter</creator><creator>Pedersen, Niels Falsig</creator><creator>Madsen, Søren</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110701</creationdate><title>Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation</title><author>Alstrøm, Tommy Sonne ; Sørensen, Mads Peter ; Pedersen, Niels Falsig ; Madsen, Søren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-3a5b72af4cee0207bbaef64e5a7c91dcf3fcb5db668c75ed2964b61c0ab90b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applications of Mathematics</topic><topic>Boundaries</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Defects</topic><topic>Finite element analysis</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Investigations</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Phase transitions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Retarding</topic><topic>Studies</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alstrøm, Tommy Sonne</creatorcontrib><creatorcontrib>Sørensen, Mads Peter</creatorcontrib><creatorcontrib>Pedersen, Niels Falsig</creatorcontrib><creatorcontrib>Madsen, Søren</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alstrøm, Tommy Sonne</au><au>Sørensen, Mads Peter</au><au>Pedersen, Niels Falsig</au><au>Madsen, Søren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>115</volume><issue>1</issue><spage>63</spage><epage>74</epage><pages>63-74</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-010-9580-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2011-07, Vol.115 (1), p.63-74
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_miscellaneous_889423450
source SpringerLink Journals
subjects Applications of Mathematics
Boundaries
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Defects
Finite element analysis
Fluid flow
Geometry
Investigations
Magnetic flux
Magnetism
Mathematical analysis
Mathematics
Mathematics and Statistics
Partial Differential Equations
Phase transitions
Probability Theory and Stochastic Processes
Retarding
Studies
Superconductivity
Superconductors
Vortices
title Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Flux%20Lines%20in%20Complex%20Geometry%20Type-II%20Superconductors%20Studied%20by%20the%20Time%20Dependent%20Ginzburg-Landau%20Equation&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Alstr%C3%B8m,%20Tommy%20Sonne&rft.date=2011-07-01&rft.volume=115&rft.issue=1&rft.spage=63&rft.epage=74&rft.pages=63-74&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-010-9580-8&rft_dat=%3Cproquest_cross%3E889423450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873118876&rft_id=info:pmid/&rfr_iscdi=true