Explosive solution of the nonlinear equation of a parabolic type

In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of rest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2011-10, Vol.24 (10), p.1676-1679
Hauptverfasser: Hajiev, T.S., Rasulov, R.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1679
container_issue 10
container_start_page 1676
container_title Applied mathematics letters
container_volume 24
creator Hajiev, T.S.
Rasulov, R.A.
description In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of restriction to smallness on the initial function. The existence of the solution is proved by smallness of the initial function.
doi_str_mv 10.1016/j.aml.2011.04.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889422982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965911001777</els_id><sourcerecordid>889422982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1143a1de5ff0c38a1701ac1976acc025d5e0dd6c7008ed2a1c34fc1bbd442fae3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78Ad56EU-tM0nabfGiiF-w4EXPYTadYpZsU5Ou6H9vl1WPngbe_N4b5glxhlAgYHW5KmjtCwmIBehiUvbEDOu5yktdyn0xg7pReVOVzaE4SmkFAKpR9Uxc330OPiT3wVkKfjO60Gehy8Y3zvrQe9czxYzfN_S7oWygSMvgnc3Gr4FPxEFHPvHpzzwWr_d3L7eP-eL54en2ZpFbDXLMEbUibLnsOrCqJpwDksVmXpG1IMu2ZGjbys4Bam4loVW6s7hctlrLjlgdi4td7hDD-4bTaNYuWfaeeg6bZOq60VI2tZxI3JE2hpQid2aIbk3xyyCYbVlmZaayzLYsA9pMyuQ5_0mnZMl3kXrr0p9Raqmwqrbc1Y7j6dUPx9Ek67i33LrIdjRtcP9c-QZ3DH9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889422982</pqid></control><display><type>article</type><title>Explosive solution of the nonlinear equation of a parabolic type</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hajiev, T.S. ; Rasulov, R.A.</creator><creatorcontrib>Hajiev, T.S. ; Rasulov, R.A.</creatorcontrib><description>In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of restriction to smallness on the initial function. The existence of the solution is proved by smallness of the initial function.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2011.04.016</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Blow-up ; Constrictions ; Exact sciences and technology ; Existence ; Explosions ; Mathematical analysis ; Mathematics ; Mixed problem ; Nonlinear ; Nonlinear equations ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Parabolic ; Partial differential equations ; Scalars ; Sciences and techniques of general use ; Solution</subject><ispartof>Applied mathematics letters, 2011-10, Vol.24 (10), p.1676-1679</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1143a1de5ff0c38a1701ac1976acc025d5e0dd6c7008ed2a1c34fc1bbd442fae3</citedby><cites>FETCH-LOGICAL-c402t-1143a1de5ff0c38a1701ac1976acc025d5e0dd6c7008ed2a1c34fc1bbd442fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893965911001777$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24231666$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajiev, T.S.</creatorcontrib><creatorcontrib>Rasulov, R.A.</creatorcontrib><title>Explosive solution of the nonlinear equation of a parabolic type</title><title>Applied mathematics letters</title><description>In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of restriction to smallness on the initial function. The existence of the solution is proved by smallness of the initial function.</description><subject>Blow-up</subject><subject>Constrictions</subject><subject>Exact sciences and technology</subject><subject>Existence</subject><subject>Explosions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mixed problem</subject><subject>Nonlinear</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Parabolic</subject><subject>Partial differential equations</subject><subject>Scalars</subject><subject>Sciences and techniques of general use</subject><subject>Solution</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH78Ad56EU-tM0nabfGiiF-w4EXPYTadYpZsU5Ou6H9vl1WPngbe_N4b5glxhlAgYHW5KmjtCwmIBehiUvbEDOu5yktdyn0xg7pReVOVzaE4SmkFAKpR9Uxc330OPiT3wVkKfjO60Gehy8Y3zvrQe9czxYzfN_S7oWygSMvgnc3Gr4FPxEFHPvHpzzwWr_d3L7eP-eL54en2ZpFbDXLMEbUibLnsOrCqJpwDksVmXpG1IMu2ZGjbys4Bam4loVW6s7hctlrLjlgdi4td7hDD-4bTaNYuWfaeeg6bZOq60VI2tZxI3JE2hpQid2aIbk3xyyCYbVlmZaayzLYsA9pMyuQ5_0mnZMl3kXrr0p9Raqmwqrbc1Y7j6dUPx9Ek67i33LrIdjRtcP9c-QZ3DH9f</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Hajiev, T.S.</creator><creator>Rasulov, R.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>Explosive solution of the nonlinear equation of a parabolic type</title><author>Hajiev, T.S. ; Rasulov, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1143a1de5ff0c38a1701ac1976acc025d5e0dd6c7008ed2a1c34fc1bbd442fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Blow-up</topic><topic>Constrictions</topic><topic>Exact sciences and technology</topic><topic>Existence</topic><topic>Explosions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mixed problem</topic><topic>Nonlinear</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Parabolic</topic><topic>Partial differential equations</topic><topic>Scalars</topic><topic>Sciences and techniques of general use</topic><topic>Solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajiev, T.S.</creatorcontrib><creatorcontrib>Rasulov, R.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajiev, T.S.</au><au>Rasulov, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explosive solution of the nonlinear equation of a parabolic type</atitle><jtitle>Applied mathematics letters</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>24</volume><issue>10</issue><spage>1676</spage><epage>1679</epage><pages>1676-1679</pages><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of restriction to smallness on the initial function. The existence of the solution is proved by smallness of the initial function.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2011.04.016</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-9659
ispartof Applied mathematics letters, 2011-10, Vol.24 (10), p.1676-1679
issn 0893-9659
1873-5452
language eng
recordid cdi_proquest_miscellaneous_889422982
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Blow-up
Constrictions
Exact sciences and technology
Existence
Explosions
Mathematical analysis
Mathematics
Mixed problem
Nonlinear
Nonlinear equations
Nonlinearity
Numerical analysis
Numerical analysis. Scientific computation
Parabolic
Partial differential equations
Scalars
Sciences and techniques of general use
Solution
title Explosive solution of the nonlinear equation of a parabolic type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explosive%20solution%20of%20the%20nonlinear%20equation%20of%20a%20parabolic%20type&rft.jtitle=Applied%20mathematics%20letters&rft.au=Hajiev,%20T.S.&rft.date=2011-10-01&rft.volume=24&rft.issue=10&rft.spage=1676&rft.epage=1679&rft.pages=1676-1679&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2011.04.016&rft_dat=%3Cproquest_cross%3E889422982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889422982&rft_id=info:pmid/&rft_els_id=S0893965911001777&rfr_iscdi=true