Explosive solution of the nonlinear equation of a parabolic type
In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of rest...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2011-10, Vol.24 (10), p.1676-1679 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1679 |
---|---|
container_issue | 10 |
container_start_page | 1676 |
container_title | Applied mathematics letters |
container_volume | 24 |
creator | Hajiev, T.S. Rasulov, R.A. |
description | In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of restriction to smallness on the initial function. The existence of the solution is proved by smallness of the initial function. |
doi_str_mv | 10.1016/j.aml.2011.04.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889422982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965911001777</els_id><sourcerecordid>889422982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1143a1de5ff0c38a1701ac1976acc025d5e0dd6c7008ed2a1c34fc1bbd442fae3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78Ad56EU-tM0nabfGiiF-w4EXPYTadYpZsU5Ou6H9vl1WPngbe_N4b5glxhlAgYHW5KmjtCwmIBehiUvbEDOu5yktdyn0xg7pReVOVzaE4SmkFAKpR9Uxc330OPiT3wVkKfjO60Gehy8Y3zvrQe9czxYzfN_S7oWygSMvgnc3Gr4FPxEFHPvHpzzwWr_d3L7eP-eL54en2ZpFbDXLMEbUibLnsOrCqJpwDksVmXpG1IMu2ZGjbys4Bam4loVW6s7hctlrLjlgdi4td7hDD-4bTaNYuWfaeeg6bZOq60VI2tZxI3JE2hpQid2aIbk3xyyCYbVlmZaayzLYsA9pMyuQ5_0mnZMl3kXrr0p9Raqmwqrbc1Y7j6dUPx9Ek67i33LrIdjRtcP9c-QZ3DH9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889422982</pqid></control><display><type>article</type><title>Explosive solution of the nonlinear equation of a parabolic type</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hajiev, T.S. ; Rasulov, R.A.</creator><creatorcontrib>Hajiev, T.S. ; Rasulov, R.A.</creatorcontrib><description>In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of restriction to smallness on the initial function. The existence of the solution is proved by smallness of the initial function.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2011.04.016</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Blow-up ; Constrictions ; Exact sciences and technology ; Existence ; Explosions ; Mathematical analysis ; Mathematics ; Mixed problem ; Nonlinear ; Nonlinear equations ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Parabolic ; Partial differential equations ; Scalars ; Sciences and techniques of general use ; Solution</subject><ispartof>Applied mathematics letters, 2011-10, Vol.24 (10), p.1676-1679</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1143a1de5ff0c38a1701ac1976acc025d5e0dd6c7008ed2a1c34fc1bbd442fae3</citedby><cites>FETCH-LOGICAL-c402t-1143a1de5ff0c38a1701ac1976acc025d5e0dd6c7008ed2a1c34fc1bbd442fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893965911001777$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24231666$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajiev, T.S.</creatorcontrib><creatorcontrib>Rasulov, R.A.</creatorcontrib><title>Explosive solution of the nonlinear equation of a parabolic type</title><title>Applied mathematics letters</title><description>In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of restriction to smallness on the initial function. The existence of the solution is proved by smallness of the initial function.</description><subject>Blow-up</subject><subject>Constrictions</subject><subject>Exact sciences and technology</subject><subject>Existence</subject><subject>Explosions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mixed problem</subject><subject>Nonlinear</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Parabolic</subject><subject>Partial differential equations</subject><subject>Scalars</subject><subject>Sciences and techniques of general use</subject><subject>Solution</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH78Ad56EU-tM0nabfGiiF-w4EXPYTadYpZsU5Ou6H9vl1WPngbe_N4b5glxhlAgYHW5KmjtCwmIBehiUvbEDOu5yktdyn0xg7pReVOVzaE4SmkFAKpR9Uxc330OPiT3wVkKfjO60Gehy8Y3zvrQe9czxYzfN_S7oWygSMvgnc3Gr4FPxEFHPvHpzzwWr_d3L7eP-eL54en2ZpFbDXLMEbUibLnsOrCqJpwDksVmXpG1IMu2ZGjbys4Bam4loVW6s7hctlrLjlgdi4td7hDD-4bTaNYuWfaeeg6bZOq60VI2tZxI3JE2hpQid2aIbk3xyyCYbVlmZaayzLYsA9pMyuQ5_0mnZMl3kXrr0p9Raqmwqrbc1Y7j6dUPx9Ek67i33LrIdjRtcP9c-QZ3DH9f</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Hajiev, T.S.</creator><creator>Rasulov, R.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>Explosive solution of the nonlinear equation of a parabolic type</title><author>Hajiev, T.S. ; Rasulov, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1143a1de5ff0c38a1701ac1976acc025d5e0dd6c7008ed2a1c34fc1bbd442fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Blow-up</topic><topic>Constrictions</topic><topic>Exact sciences and technology</topic><topic>Existence</topic><topic>Explosions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mixed problem</topic><topic>Nonlinear</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Parabolic</topic><topic>Partial differential equations</topic><topic>Scalars</topic><topic>Sciences and techniques of general use</topic><topic>Solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajiev, T.S.</creatorcontrib><creatorcontrib>Rasulov, R.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajiev, T.S.</au><au>Rasulov, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explosive solution of the nonlinear equation of a parabolic type</atitle><jtitle>Applied mathematics letters</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>24</volume><issue>10</issue><spage>1676</spage><epage>1679</epage><pages>1676-1679</pages><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In this paper the unbounded increasing solution of the scalar nonlinear partial equation of the parabolic type for finite time is investigated. The sufficient condition for nonlinearity is established. Under this condition every solution of the investigated problem is exploded by the absence of restriction to smallness on the initial function. The existence of the solution is proved by smallness of the initial function.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2011.04.016</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-9659 |
ispartof | Applied mathematics letters, 2011-10, Vol.24 (10), p.1676-1679 |
issn | 0893-9659 1873-5452 |
language | eng |
recordid | cdi_proquest_miscellaneous_889422982 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Blow-up Constrictions Exact sciences and technology Existence Explosions Mathematical analysis Mathematics Mixed problem Nonlinear Nonlinear equations Nonlinearity Numerical analysis Numerical analysis. Scientific computation Parabolic Partial differential equations Scalars Sciences and techniques of general use Solution |
title | Explosive solution of the nonlinear equation of a parabolic type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explosive%20solution%20of%20the%20nonlinear%20equation%20of%20a%20parabolic%20type&rft.jtitle=Applied%20mathematics%20letters&rft.au=Hajiev,%20T.S.&rft.date=2011-10-01&rft.volume=24&rft.issue=10&rft.spage=1676&rft.epage=1679&rft.pages=1676-1679&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2011.04.016&rft_dat=%3Cproquest_cross%3E889422982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889422982&rft_id=info:pmid/&rft_els_id=S0893965911001777&rfr_iscdi=true |