Statistical Model of Line-Edge and Line-Width Roughness for Device Variability Analysis
The authors propose a model of line-edge and line-width roughness (LER and LWR) of actual device patterns, which received some smoothing steps, for accurate estimation of device variability. The model assumes that LER/LWR has originally an exponential autocorrelation function (ACF) and is smoothed u...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2011-06, Vol.58 (6), p.1672-1680 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1680 |
---|---|
container_issue | 6 |
container_start_page | 1672 |
container_title | IEEE transactions on electron devices |
container_volume | 58 |
creator | Hiraiwa, A Nishida, A Mogami, T |
description | The authors propose a model of line-edge and line-width roughness (LER and LWR) of actual device patterns, which received some smoothing steps, for accurate estimation of device variability. The model assumes that LER/LWR has originally an exponential autocorrelation function (ACF) and is smoothed using another exponential function. The power spectrum of this ACF almost completely fits the experimental one of polycrystalline silicon lines, which were formed using plasma etching. The authors investigate the effect of LER/LWR on the current factor of metal-oxide-semiconductor field-effect-transistors, comparing this to conventional models. The Gaussian ACF, which is widely used in device simulations, calculates the variation in the current factor with considerable accuracy as long as accurate LER/LWR statistics are used. However, it alone cannot provide the statistics. The exponential ACF underestimates the variation by a nonnegligible amount. From these results, the authors propose to use the aforementioned smoothed exponential ACF in the device simulations. They also alert to the possibility that a little-known long-range correlation exists universally in the LER/LWR even of the present-day devices and is causing an unexpectedly large mismatching between wide-channel devices. |
doi_str_mv | 10.1109/TED.2011.2131144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889420296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5751665</ieee_id><sourcerecordid>2355789271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-a803c69ab458c72727d75a62163a4d490f46ca8244ac8804d67120773d15a70d3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMoWB93wUsQxNPWTF6bPYrWB1QEXz0u0ySrkXVXk63Qf29KiweZwzDMNw8-Qo6AjQFYdf48uRpzBjDmIACk3CIjUKosKi31NhkxBqaohBG7ZC-lj1xqKfmIzJ4GHEIagsWW3vfOt7Rv6DR0vpi4N0-xc-tqFtzwTh_7xdt751OiTR_plf8J1tNXjAHnoQ3Dkl502C5TSAdkp8E2-cNN3icv15Pny9ti-nBzd3kxLawEMxRomLC6wrlUxpY8hysVag5aoHSyYo3UFg2XEq0xTDpdAmdlKRwoLJkT--Rsvfcr9t8Ln4b6MyTr2xY73y9SbUwlOeOVzuTJP_KjX8T8boa04SCF4hlia8jGPqXom_orhk-MyxpYvfJcZ8_1ynO98ZxHTjd7MWWJTcTOhvQ3xyXnvFKr-8drLnjv_9qqVKC1Er9cUIN5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868214352</pqid></control><display><type>article</type><title>Statistical Model of Line-Edge and Line-Width Roughness for Device Variability Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Hiraiwa, A ; Nishida, A ; Mogami, T</creator><creatorcontrib>Hiraiwa, A ; Nishida, A ; Mogami, T</creatorcontrib><description>The authors propose a model of line-edge and line-width roughness (LER and LWR) of actual device patterns, which received some smoothing steps, for accurate estimation of device variability. The model assumes that LER/LWR has originally an exponential autocorrelation function (ACF) and is smoothed using another exponential function. The power spectrum of this ACF almost completely fits the experimental one of polycrystalline silicon lines, which were formed using plasma etching. The authors investigate the effect of LER/LWR on the current factor of metal-oxide-semiconductor field-effect-transistors, comparing this to conventional models. The Gaussian ACF, which is widely used in device simulations, calculates the variation in the current factor with considerable accuracy as long as accurate LER/LWR statistics are used. However, it alone cannot provide the statistics. The exponential ACF underestimates the variation by a nonnegligible amount. From these results, the authors propose to use the aforementioned smoothed exponential ACF in the device simulations. They also alert to the possibility that a little-known long-range correlation exists universally in the LER/LWR even of the present-day devices and is causing an unexpectedly large mismatching between wide-channel devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2131144</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analytical models ; Applied sciences ; Autocorrelation function (ACF) ; Autocorrelation functions ; Correlation ; current factor ; device variability ; Devices ; Electronics ; Etching ; Exact sciences and technology ; exponential ; Gaussian ; Image edge detection ; Light water reactors ; line-edge roughness (LER) ; Mathematical models ; Microelectronic fabrication (materials and surfaces technology) ; Noise ; Plasma etching ; Roughness ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Simulation ; Smoothing methods ; Statistics ; Studies ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2011-06, Vol.58 (6), p.1672-1680</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-a803c69ab458c72727d75a62163a4d490f46ca8244ac8804d67120773d15a70d3</citedby><cites>FETCH-LOGICAL-c418t-a803c69ab458c72727d75a62163a4d490f46ca8244ac8804d67120773d15a70d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5751665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5751665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24222956$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiraiwa, A</creatorcontrib><creatorcontrib>Nishida, A</creatorcontrib><creatorcontrib>Mogami, T</creatorcontrib><title>Statistical Model of Line-Edge and Line-Width Roughness for Device Variability Analysis</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The authors propose a model of line-edge and line-width roughness (LER and LWR) of actual device patterns, which received some smoothing steps, for accurate estimation of device variability. The model assumes that LER/LWR has originally an exponential autocorrelation function (ACF) and is smoothed using another exponential function. The power spectrum of this ACF almost completely fits the experimental one of polycrystalline silicon lines, which were formed using plasma etching. The authors investigate the effect of LER/LWR on the current factor of metal-oxide-semiconductor field-effect-transistors, comparing this to conventional models. The Gaussian ACF, which is widely used in device simulations, calculates the variation in the current factor with considerable accuracy as long as accurate LER/LWR statistics are used. However, it alone cannot provide the statistics. The exponential ACF underestimates the variation by a nonnegligible amount. From these results, the authors propose to use the aforementioned smoothed exponential ACF in the device simulations. They also alert to the possibility that a little-known long-range correlation exists universally in the LER/LWR even of the present-day devices and is causing an unexpectedly large mismatching between wide-channel devices.</description><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Autocorrelation function (ACF)</subject><subject>Autocorrelation functions</subject><subject>Correlation</subject><subject>current factor</subject><subject>device variability</subject><subject>Devices</subject><subject>Electronics</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>exponential</subject><subject>Gaussian</subject><subject>Image edge detection</subject><subject>Light water reactors</subject><subject>line-edge roughness (LER)</subject><subject>Mathematical models</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Noise</subject><subject>Plasma etching</subject><subject>Roughness</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Simulation</subject><subject>Smoothing methods</subject><subject>Statistics</subject><subject>Studies</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMoWB93wUsQxNPWTF6bPYrWB1QEXz0u0ySrkXVXk63Qf29KiweZwzDMNw8-Qo6AjQFYdf48uRpzBjDmIACk3CIjUKosKi31NhkxBqaohBG7ZC-lj1xqKfmIzJ4GHEIagsWW3vfOt7Rv6DR0vpi4N0-xc-tqFtzwTh_7xdt751OiTR_plf8J1tNXjAHnoQ3Dkl502C5TSAdkp8E2-cNN3icv15Pny9ti-nBzd3kxLawEMxRomLC6wrlUxpY8hysVag5aoHSyYo3UFg2XEq0xTDpdAmdlKRwoLJkT--Rsvfcr9t8Ln4b6MyTr2xY73y9SbUwlOeOVzuTJP_KjX8T8boa04SCF4hlia8jGPqXom_orhk-MyxpYvfJcZ8_1ynO98ZxHTjd7MWWJTcTOhvQ3xyXnvFKr-8drLnjv_9qqVKC1Er9cUIN5</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Hiraiwa, A</creator><creator>Nishida, A</creator><creator>Mogami, T</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110601</creationdate><title>Statistical Model of Line-Edge and Line-Width Roughness for Device Variability Analysis</title><author>Hiraiwa, A ; Nishida, A ; Mogami, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-a803c69ab458c72727d75a62163a4d490f46ca8244ac8804d67120773d15a70d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Autocorrelation function (ACF)</topic><topic>Autocorrelation functions</topic><topic>Correlation</topic><topic>current factor</topic><topic>device variability</topic><topic>Devices</topic><topic>Electronics</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>exponential</topic><topic>Gaussian</topic><topic>Image edge detection</topic><topic>Light water reactors</topic><topic>line-edge roughness (LER)</topic><topic>Mathematical models</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Noise</topic><topic>Plasma etching</topic><topic>Roughness</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Simulation</topic><topic>Smoothing methods</topic><topic>Statistics</topic><topic>Studies</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiraiwa, A</creatorcontrib><creatorcontrib>Nishida, A</creatorcontrib><creatorcontrib>Mogami, T</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hiraiwa, A</au><au>Nishida, A</au><au>Mogami, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Model of Line-Edge and Line-Width Roughness for Device Variability Analysis</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>58</volume><issue>6</issue><spage>1672</spage><epage>1680</epage><pages>1672-1680</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The authors propose a model of line-edge and line-width roughness (LER and LWR) of actual device patterns, which received some smoothing steps, for accurate estimation of device variability. The model assumes that LER/LWR has originally an exponential autocorrelation function (ACF) and is smoothed using another exponential function. The power spectrum of this ACF almost completely fits the experimental one of polycrystalline silicon lines, which were formed using plasma etching. The authors investigate the effect of LER/LWR on the current factor of metal-oxide-semiconductor field-effect-transistors, comparing this to conventional models. The Gaussian ACF, which is widely used in device simulations, calculates the variation in the current factor with considerable accuracy as long as accurate LER/LWR statistics are used. However, it alone cannot provide the statistics. The exponential ACF underestimates the variation by a nonnegligible amount. From these results, the authors propose to use the aforementioned smoothed exponential ACF in the device simulations. They also alert to the possibility that a little-known long-range correlation exists universally in the LER/LWR even of the present-day devices and is causing an unexpectedly large mismatching between wide-channel devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2131144</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2011-06, Vol.58 (6), p.1672-1680 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_889420296 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Applied sciences Autocorrelation function (ACF) Autocorrelation functions Correlation current factor device variability Devices Electronics Etching Exact sciences and technology exponential Gaussian Image edge detection Light water reactors line-edge roughness (LER) Mathematical models Microelectronic fabrication (materials and surfaces technology) Noise Plasma etching Roughness Semiconductor device modeling Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Simulation Smoothing methods Statistics Studies Transistors |
title | Statistical Model of Line-Edge and Line-Width Roughness for Device Variability Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Model%20of%20Line-Edge%20and%20Line-Width%20Roughness%20for%20Device%20Variability%20Analysis&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Hiraiwa,%20A&rft.date=2011-06-01&rft.volume=58&rft.issue=6&rft.spage=1672&rft.epage=1680&rft.pages=1672-1680&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2131144&rft_dat=%3Cproquest_RIE%3E2355789271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868214352&rft_id=info:pmid/&rft_ieee_id=5751665&rfr_iscdi=true |