Optimization of source and detector configurations based on Cramer-Rao lower bound analysis

Optimization of source and detector (SD) arrangements in a diffuse optical tomography system is helpful for improving measurements' sensitivity to localized changes in imaging domain and enhancing the capacity of noise resistance. We introduced a rigorous and computationally efficient methodolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Biomedical Optics 2011-03, Vol.16 (3), p.035001-035001
Hauptverfasser: Chen, Ling, Chen, Nanguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 035001
container_issue 3
container_start_page 035001
container_title Journal of Biomedical Optics
container_volume 16
creator Chen, Ling
Chen, Nanguang
description Optimization of source and detector (SD) arrangements in a diffuse optical tomography system is helpful for improving measurements' sensitivity to localized changes in imaging domain and enhancing the capacity of noise resistance. We introduced a rigorous and computationally efficient methodology and adapt it into the diffuse optics field to realize the optimizations of SD arrangements. Our method is based on Cramer-Rao lower bound analysis, which combines the diffusion-forward model and a noise model together. This method can be used to investigate the performance of the SD arrangements through quantitative estimations of lower bounds of the standard variances of the reconstructed perturbation depths and values. More importantly, it provides direct estimations of parameters without solving the inverse problem. Simulations are conducted in the reflection geometry to validate the effectiveness of the method on selections of the optimized SD sets, with a fixed number of sources and detectors, from an SD group on a planar probe surface. The impacts of different noise levels and target perturbation depths are considered in the simulations. It is demonstrated that the SD sets selected by this method afford better reconstructed images. This methodology can be adapted to other probe surfaces and other imaging geometries.
doi_str_mv 10.1117/1.3549738
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889419456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889419456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-adc69a68ffbe04a688825549a36bc96d8ab4d16ee85242c084c843f714fde5f03</originalsourceid><addsrcrecordid>eNqFkc1OwzAQhC0EglI48ALIN8QhxY4dd3OEil8hFSE4cYgcZ42CkrjYiVB5elxaeuWyHsufR5pZQk44m3DOpxd8IjKZTwXskBHPFEvSFPhu1AxEIpSCA3IYwgdjDFSu9slBymWmQKUj8jZf9HVbf-u-dh11lgY3eINUdxWtsEfTO0-N62z9PvhfKNBSB6xoxGdet-iTZ-1o477Q09IN8Z_udLMMdTgie1Y3AY8355i83ly_zO6Sx_nt_ezyMTEil32iK6NyrcDaEpmMAiDNYh4tVGlyVYEuZcUVImSpTA0DaUAKO-XSVphZJsbkbO278O5zwNAXbR0MNo3u0A2hAMglz2Pi_0nFOAgGK8_zNWm8C8GjLRa-brVfFpwVq9ILXmxKj-zpxnUoW6y25F_LEUjXQFjUuH1-uJo_3czjUhhXq8kEE1m8_GoufgACB4pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860183080</pqid></control><display><type>article</type><title>Optimization of source and detector configurations based on Cramer-Rao lower bound analysis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chen, Ling ; Chen, Nanguang</creator><creatorcontrib>Chen, Ling ; Chen, Nanguang</creatorcontrib><description>Optimization of source and detector (SD) arrangements in a diffuse optical tomography system is helpful for improving measurements' sensitivity to localized changes in imaging domain and enhancing the capacity of noise resistance. We introduced a rigorous and computationally efficient methodology and adapt it into the diffuse optics field to realize the optimizations of SD arrangements. Our method is based on Cramer-Rao lower bound analysis, which combines the diffusion-forward model and a noise model together. This method can be used to investigate the performance of the SD arrangements through quantitative estimations of lower bounds of the standard variances of the reconstructed perturbation depths and values. More importantly, it provides direct estimations of parameters without solving the inverse problem. Simulations are conducted in the reflection geometry to validate the effectiveness of the method on selections of the optimized SD sets, with a fixed number of sources and detectors, from an SD group on a planar probe surface. The impacts of different noise levels and target perturbation depths are considered in the simulations. It is demonstrated that the SD sets selected by this method afford better reconstructed images. This methodology can be adapted to other probe surfaces and other imaging geometries.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.3549738</identifier><identifier>PMID: 21456862</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Computer simulation ; Data Interpretation, Statistical ; Detectors ; Diagnostic Imaging - methods ; Diagnostic Imaging - statistics &amp; numerical data ; Diffusion ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Lower bounds ; Mathematical models ; Models, Theoretical ; Noise ; Optical Phenomena ; Optimization ; Perturbation methods ; Tomography, Optical - methods ; Tomography, Optical - statistics &amp; numerical data</subject><ispartof>Journal of Biomedical Optics, 2011-03, Vol.16 (3), p.035001-035001</ispartof><rights>2011 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-adc69a68ffbe04a688825549a36bc96d8ab4d16ee85242c084c843f714fde5f03</citedby><cites>FETCH-LOGICAL-c394t-adc69a68ffbe04a688825549a36bc96d8ab4d16ee85242c084c843f714fde5f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21456862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Chen, Nanguang</creatorcontrib><title>Optimization of source and detector configurations based on Cramer-Rao lower bound analysis</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>Optimization of source and detector (SD) arrangements in a diffuse optical tomography system is helpful for improving measurements' sensitivity to localized changes in imaging domain and enhancing the capacity of noise resistance. We introduced a rigorous and computationally efficient methodology and adapt it into the diffuse optics field to realize the optimizations of SD arrangements. Our method is based on Cramer-Rao lower bound analysis, which combines the diffusion-forward model and a noise model together. This method can be used to investigate the performance of the SD arrangements through quantitative estimations of lower bounds of the standard variances of the reconstructed perturbation depths and values. More importantly, it provides direct estimations of parameters without solving the inverse problem. Simulations are conducted in the reflection geometry to validate the effectiveness of the method on selections of the optimized SD sets, with a fixed number of sources and detectors, from an SD group on a planar probe surface. The impacts of different noise levels and target perturbation depths are considered in the simulations. It is demonstrated that the SD sets selected by this method afford better reconstructed images. This methodology can be adapted to other probe surfaces and other imaging geometries.</description><subject>Animals</subject><subject>Computer simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Detectors</subject><subject>Diagnostic Imaging - methods</subject><subject>Diagnostic Imaging - statistics &amp; numerical data</subject><subject>Diffusion</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Noise</subject><subject>Optical Phenomena</subject><subject>Optimization</subject><subject>Perturbation methods</subject><subject>Tomography, Optical - methods</subject><subject>Tomography, Optical - statistics &amp; numerical data</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1OwzAQhC0EglI48ALIN8QhxY4dd3OEil8hFSE4cYgcZ42CkrjYiVB5elxaeuWyHsufR5pZQk44m3DOpxd8IjKZTwXskBHPFEvSFPhu1AxEIpSCA3IYwgdjDFSu9slBymWmQKUj8jZf9HVbf-u-dh11lgY3eINUdxWtsEfTO0-N62z9PvhfKNBSB6xoxGdet-iTZ-1o477Q09IN8Z_udLMMdTgie1Y3AY8355i83ly_zO6Sx_nt_ezyMTEil32iK6NyrcDaEpmMAiDNYh4tVGlyVYEuZcUVImSpTA0DaUAKO-XSVphZJsbkbO278O5zwNAXbR0MNo3u0A2hAMglz2Pi_0nFOAgGK8_zNWm8C8GjLRa-brVfFpwVq9ILXmxKj-zpxnUoW6y25F_LEUjXQFjUuH1-uJo_3czjUhhXq8kEE1m8_GoufgACB4pA</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Chen, Ling</creator><creator>Chen, Nanguang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Optimization of source and detector configurations based on Cramer-Rao lower bound analysis</title><author>Chen, Ling ; Chen, Nanguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-adc69a68ffbe04a688825549a36bc96d8ab4d16ee85242c084c843f714fde5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Computer simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Detectors</topic><topic>Diagnostic Imaging - methods</topic><topic>Diagnostic Imaging - statistics &amp; numerical data</topic><topic>Diffusion</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Noise</topic><topic>Optical Phenomena</topic><topic>Optimization</topic><topic>Perturbation methods</topic><topic>Tomography, Optical - methods</topic><topic>Tomography, Optical - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Chen, Nanguang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ling</au><au>Chen, Nanguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of source and detector configurations based on Cramer-Rao lower bound analysis</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>16</volume><issue>3</issue><spage>035001</spage><epage>035001</epage><pages>035001-035001</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>Optimization of source and detector (SD) arrangements in a diffuse optical tomography system is helpful for improving measurements' sensitivity to localized changes in imaging domain and enhancing the capacity of noise resistance. We introduced a rigorous and computationally efficient methodology and adapt it into the diffuse optics field to realize the optimizations of SD arrangements. Our method is based on Cramer-Rao lower bound analysis, which combines the diffusion-forward model and a noise model together. This method can be used to investigate the performance of the SD arrangements through quantitative estimations of lower bounds of the standard variances of the reconstructed perturbation depths and values. More importantly, it provides direct estimations of parameters without solving the inverse problem. Simulations are conducted in the reflection geometry to validate the effectiveness of the method on selections of the optimized SD sets, with a fixed number of sources and detectors, from an SD group on a planar probe surface. The impacts of different noise levels and target perturbation depths are considered in the simulations. It is demonstrated that the SD sets selected by this method afford better reconstructed images. This methodology can be adapted to other probe surfaces and other imaging geometries.</abstract><cop>United States</cop><pmid>21456862</pmid><doi>10.1117/1.3549738</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of Biomedical Optics, 2011-03, Vol.16 (3), p.035001-035001
issn 1083-3668
1560-2281
language eng
recordid cdi_proquest_miscellaneous_889419456
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Computer simulation
Data Interpretation, Statistical
Detectors
Diagnostic Imaging - methods
Diagnostic Imaging - statistics & numerical data
Diffusion
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - statistics & numerical data
Lower bounds
Mathematical models
Models, Theoretical
Noise
Optical Phenomena
Optimization
Perturbation methods
Tomography, Optical - methods
Tomography, Optical - statistics & numerical data
title Optimization of source and detector configurations based on Cramer-Rao lower bound analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20source%20and%20detector%20configurations%20based%20on%20Cramer-Rao%20lower%20bound%20analysis&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Chen,%20Ling&rft.date=2011-03-01&rft.volume=16&rft.issue=3&rft.spage=035001&rft.epage=035001&rft.pages=035001-035001&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.3549738&rft_dat=%3Cproquest_cross%3E889419456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860183080&rft_id=info:pmid/21456862&rfr_iscdi=true