Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths
This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios, η = 0.5 and η = 0.6, and compared with Hollerbach’s work for η = 0.3...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2011-07, Vol.219 (3-4), p.255-268 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | 3-4 |
container_start_page | 255 |
container_title | Acta mechanica |
container_volume | 219 |
creator | Travnikov, V. Eckert, K. Odenbach, S. |
description | This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios,
η
= 0.5 and
η
= 0.6, and compared with Hollerbach’s work for
η
= 0.33 (Hollerbach in Proc R Soc 465:2003,
2009
). The corresponding instability diagrams, i.e., the critical values of the Reynolds number
Re
, the wave number, and the frequency on the Hartmann number
Ha
, are presented and accompanied by simulation of the transition between three-dimensional flow states of different symmetries. The characteristic subdivision of the linear stability curves into anti-symmetric modes, which is responsible for the instability at small
Ha
, and symmetric modes occurring at higher
Ha
is found for larger
η
, too. However, the extension of the stability corridor between the anti-symmetric and the symmetric modes increases nonlinearly with
η
. This offers the possibility to stabilize the basic flow up to high
Re
by appropriately increasing
Ha
. |
doi_str_mv | 10.1007/s00707-011-0452-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_889418763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355249525</galeid><sourcerecordid>A355249525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-c8173600db709d0d0a8cac1bd3e6bd55c633b053e4814282b4e3b89929457b263</originalsourceid><addsrcrecordid>eNp1kV9rHCEUxaU00O0mH6BvUih9mlQdHfUxLP0TCPSleRbHue66zOpWHdJ8-7pMaKHQF8Xr7xwO9yD0jpJbSoj8VNpBZEco7QgXrFOv0IYOVHeD7uVrtCGE0E5oSd6gt6Uc24tJTjfoeB_9vEB0gJPHNmL7K9gZn-w-Qg0O-wDzhFPE9QC4VDuGOdTnC1vOB8jBNXiXFqgVsJ_TU8FPoR7wFLyHDLHivT230VQP5RpdeTsXuHm5t-jxy-cfu2_dw_ev97u7h85xOtTOKSr7gZBplERPZCJWOevoOPUwjJMQbuj7kYgeuKKcKTZy6EelNdNcyJEN_RZ9XH3POf1coFRzCsXBPNsIaSlGKc2pks1mi97_Qx7TkmMLZ5QkjLUkskG3K7S3M5gQfarZtkR2glNwKYIPbX7XC8G4Fkw0AV0FLqdSMnhzzuFk87OhxFzKMmtZppVlLmUZ1TQfXpLY0lbqs40ulD9CxtlABdONYytX2lfcQ_6b-P_mvwH0eaMB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870228177</pqid></control><display><type>article</type><title>Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths</title><source>SpringerLink Journals</source><creator>Travnikov, V. ; Eckert, K. ; Odenbach, S.</creator><creatorcontrib>Travnikov, V. ; Eckert, K. ; Odenbach, S.</creatorcontrib><description>This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios,
η
= 0.5 and
η
= 0.6, and compared with Hollerbach’s work for
η
= 0.33 (Hollerbach in Proc R Soc 465:2003,
2009
). The corresponding instability diagrams, i.e., the critical values of the Reynolds number
Re
, the wave number, and the frequency on the Hartmann number
Ha
, are presented and accompanied by simulation of the transition between three-dimensional flow states of different symmetries. The characteristic subdivision of the linear stability curves into anti-symmetric modes, which is responsible for the instability at small
Ha
, and symmetric modes occurring at higher
Ha
is found for larger
η
, too. However, the extension of the stability corridor between the anti-symmetric and the symmetric modes increases nonlinearly with
η
. This offers the possibility to stabilize the basic flow up to high
Re
by appropriately increasing
Ha
.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-011-0452-8</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Band gap ; Classical and Continuum Physics ; Computational fluid dynamics ; Conducting fluids ; Control ; Corridors ; Couette flow ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Exact sciences and technology ; Flow velocity ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Hydrodynamic stability ; Instability ; Magnetic fields ; Physics ; Reynolds number ; Solid Mechanics ; Stability ; Subdivisions ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2011-07, Vol.219 (3-4), p.255-268</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-c8173600db709d0d0a8cac1bd3e6bd55c633b053e4814282b4e3b89929457b263</citedby><cites>FETCH-LOGICAL-c416t-c8173600db709d0d0a8cac1bd3e6bd55c633b053e4814282b4e3b89929457b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-011-0452-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-011-0452-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24261529$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Travnikov, V.</creatorcontrib><creatorcontrib>Eckert, K.</creatorcontrib><creatorcontrib>Odenbach, S.</creatorcontrib><title>Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios,
η
= 0.5 and
η
= 0.6, and compared with Hollerbach’s work for
η
= 0.33 (Hollerbach in Proc R Soc 465:2003,
2009
). The corresponding instability diagrams, i.e., the critical values of the Reynolds number
Re
, the wave number, and the frequency on the Hartmann number
Ha
, are presented and accompanied by simulation of the transition between three-dimensional flow states of different symmetries. The characteristic subdivision of the linear stability curves into anti-symmetric modes, which is responsible for the instability at small
Ha
, and symmetric modes occurring at higher
Ha
is found for larger
η
, too. However, the extension of the stability corridor between the anti-symmetric and the symmetric modes increases nonlinearly with
η
. This offers the possibility to stabilize the basic flow up to high
Re
by appropriately increasing
Ha
.</description><subject>Analysis</subject><subject>Band gap</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Conducting fluids</subject><subject>Control</subject><subject>Corridors</subject><subject>Couette flow</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Hydrodynamic stability</subject><subject>Instability</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Solid Mechanics</subject><subject>Stability</subject><subject>Subdivisions</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV9rHCEUxaU00O0mH6BvUih9mlQdHfUxLP0TCPSleRbHue66zOpWHdJ8-7pMaKHQF8Xr7xwO9yD0jpJbSoj8VNpBZEco7QgXrFOv0IYOVHeD7uVrtCGE0E5oSd6gt6Uc24tJTjfoeB_9vEB0gJPHNmL7K9gZn-w-Qg0O-wDzhFPE9QC4VDuGOdTnC1vOB8jBNXiXFqgVsJ_TU8FPoR7wFLyHDLHivT230VQP5RpdeTsXuHm5t-jxy-cfu2_dw_ev97u7h85xOtTOKSr7gZBplERPZCJWOevoOPUwjJMQbuj7kYgeuKKcKTZy6EelNdNcyJEN_RZ9XH3POf1coFRzCsXBPNsIaSlGKc2pks1mi97_Qx7TkmMLZ5QkjLUkskG3K7S3M5gQfarZtkR2glNwKYIPbX7XC8G4Fkw0AV0FLqdSMnhzzuFk87OhxFzKMmtZppVlLmUZ1TQfXpLY0lbqs40ulD9CxtlABdONYytX2lfcQ_6b-P_mvwH0eaMB</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Travnikov, V.</creator><creator>Eckert, K.</creator><creator>Odenbach, S.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110701</creationdate><title>Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths</title><author>Travnikov, V. ; Eckert, K. ; Odenbach, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-c8173600db709d0d0a8cac1bd3e6bd55c633b053e4814282b4e3b89929457b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Band gap</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Conducting fluids</topic><topic>Control</topic><topic>Corridors</topic><topic>Couette flow</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Hydrodynamic stability</topic><topic>Instability</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Solid Mechanics</topic><topic>Stability</topic><topic>Subdivisions</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Travnikov, V.</creatorcontrib><creatorcontrib>Eckert, K.</creatorcontrib><creatorcontrib>Odenbach, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Travnikov, V.</au><au>Eckert, K.</au><au>Odenbach, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>219</volume><issue>3-4</issue><spage>255</spage><epage>268</epage><pages>255-268</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios,
η
= 0.5 and
η
= 0.6, and compared with Hollerbach’s work for
η
= 0.33 (Hollerbach in Proc R Soc 465:2003,
2009
). The corresponding instability diagrams, i.e., the critical values of the Reynolds number
Re
, the wave number, and the frequency on the Hartmann number
Ha
, are presented and accompanied by simulation of the transition between three-dimensional flow states of different symmetries. The characteristic subdivision of the linear stability curves into anti-symmetric modes, which is responsible for the instability at small
Ha
, and symmetric modes occurring at higher
Ha
is found for larger
η
, too. However, the extension of the stability corridor between the anti-symmetric and the symmetric modes increases nonlinearly with
η
. This offers the possibility to stabilize the basic flow up to high
Re
by appropriately increasing
Ha
.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-011-0452-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2011-07, Vol.219 (3-4), p.255-268 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_miscellaneous_889418763 |
source | SpringerLink Journals |
subjects | Analysis Band gap Classical and Continuum Physics Computational fluid dynamics Conducting fluids Control Corridors Couette flow Dynamical Systems Engineering Engineering Thermodynamics Exact sciences and technology Flow velocity Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fundamental areas of phenomenology (including applications) Heat and Mass Transfer Hydrodynamic stability Instability Magnetic fields Physics Reynolds number Solid Mechanics Stability Subdivisions Theoretical and Applied Mechanics Vibration |
title | Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20an%20axial%20magnetic%20field%20on%20the%20stability%20of%20spherical%20Couette%20flows%20with%20different%20gap%20widths&rft.jtitle=Acta%20mechanica&rft.au=Travnikov,%20V.&rft.date=2011-07-01&rft.volume=219&rft.issue=3-4&rft.spage=255&rft.epage=268&rft.pages=255-268&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-011-0452-8&rft_dat=%3Cgale_proqu%3EA355249525%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870228177&rft_id=info:pmid/&rft_galeid=A355249525&rfr_iscdi=true |