Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths

This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios, η  = 0.5 and η  = 0.6, and compared with Hollerbach’s work for η  = 0.3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2011-07, Vol.219 (3-4), p.255-268
Hauptverfasser: Travnikov, V., Eckert, K., Odenbach, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 3-4
container_start_page 255
container_title Acta mechanica
container_volume 219
creator Travnikov, V.
Eckert, K.
Odenbach, S.
description This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios, η  = 0.5 and η  = 0.6, and compared with Hollerbach’s work for η  = 0.33 (Hollerbach in Proc R Soc 465:2003, 2009 ). The corresponding instability diagrams, i.e., the critical values of the Reynolds number Re , the wave number, and the frequency on the Hartmann number Ha , are presented and accompanied by simulation of the transition between three-dimensional flow states of different symmetries. The characteristic subdivision of the linear stability curves into anti-symmetric modes, which is responsible for the instability at small Ha , and symmetric modes occurring at higher Ha is found for larger η , too. However, the extension of the stability corridor between the anti-symmetric and the symmetric modes increases nonlinearly with η . This offers the possibility to stabilize the basic flow up to high Re by appropriately increasing Ha .
doi_str_mv 10.1007/s00707-011-0452-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_889418763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355249525</galeid><sourcerecordid>A355249525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-c8173600db709d0d0a8cac1bd3e6bd55c633b053e4814282b4e3b89929457b263</originalsourceid><addsrcrecordid>eNp1kV9rHCEUxaU00O0mH6BvUih9mlQdHfUxLP0TCPSleRbHue66zOpWHdJ8-7pMaKHQF8Xr7xwO9yD0jpJbSoj8VNpBZEco7QgXrFOv0IYOVHeD7uVrtCGE0E5oSd6gt6Uc24tJTjfoeB_9vEB0gJPHNmL7K9gZn-w-Qg0O-wDzhFPE9QC4VDuGOdTnC1vOB8jBNXiXFqgVsJ_TU8FPoR7wFLyHDLHivT230VQP5RpdeTsXuHm5t-jxy-cfu2_dw_ev97u7h85xOtTOKSr7gZBplERPZCJWOevoOPUwjJMQbuj7kYgeuKKcKTZy6EelNdNcyJEN_RZ9XH3POf1coFRzCsXBPNsIaSlGKc2pks1mi97_Qx7TkmMLZ5QkjLUkskG3K7S3M5gQfarZtkR2glNwKYIPbX7XC8G4Fkw0AV0FLqdSMnhzzuFk87OhxFzKMmtZppVlLmUZ1TQfXpLY0lbqs40ulD9CxtlABdONYytX2lfcQ_6b-P_mvwH0eaMB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870228177</pqid></control><display><type>article</type><title>Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths</title><source>SpringerLink Journals</source><creator>Travnikov, V. ; Eckert, K. ; Odenbach, S.</creator><creatorcontrib>Travnikov, V. ; Eckert, K. ; Odenbach, S.</creatorcontrib><description>This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios, η  = 0.5 and η  = 0.6, and compared with Hollerbach’s work for η  = 0.33 (Hollerbach in Proc R Soc 465:2003, 2009 ). The corresponding instability diagrams, i.e., the critical values of the Reynolds number Re , the wave number, and the frequency on the Hartmann number Ha , are presented and accompanied by simulation of the transition between three-dimensional flow states of different symmetries. The characteristic subdivision of the linear stability curves into anti-symmetric modes, which is responsible for the instability at small Ha , and symmetric modes occurring at higher Ha is found for larger η , too. However, the extension of the stability corridor between the anti-symmetric and the symmetric modes increases nonlinearly with η . This offers the possibility to stabilize the basic flow up to high Re by appropriately increasing Ha .</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-011-0452-8</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Band gap ; Classical and Continuum Physics ; Computational fluid dynamics ; Conducting fluids ; Control ; Corridors ; Couette flow ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Exact sciences and technology ; Flow velocity ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Hydrodynamic stability ; Instability ; Magnetic fields ; Physics ; Reynolds number ; Solid Mechanics ; Stability ; Subdivisions ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2011-07, Vol.219 (3-4), p.255-268</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-c8173600db709d0d0a8cac1bd3e6bd55c633b053e4814282b4e3b89929457b263</citedby><cites>FETCH-LOGICAL-c416t-c8173600db709d0d0a8cac1bd3e6bd55c633b053e4814282b4e3b89929457b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-011-0452-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-011-0452-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24261529$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Travnikov, V.</creatorcontrib><creatorcontrib>Eckert, K.</creatorcontrib><creatorcontrib>Odenbach, S.</creatorcontrib><title>Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios, η  = 0.5 and η  = 0.6, and compared with Hollerbach’s work for η  = 0.33 (Hollerbach in Proc R Soc 465:2003, 2009 ). The corresponding instability diagrams, i.e., the critical values of the Reynolds number Re , the wave number, and the frequency on the Hartmann number Ha , are presented and accompanied by simulation of the transition between three-dimensional flow states of different symmetries. The characteristic subdivision of the linear stability curves into anti-symmetric modes, which is responsible for the instability at small Ha , and symmetric modes occurring at higher Ha is found for larger η , too. However, the extension of the stability corridor between the anti-symmetric and the symmetric modes increases nonlinearly with η . This offers the possibility to stabilize the basic flow up to high Re by appropriately increasing Ha .</description><subject>Analysis</subject><subject>Band gap</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Conducting fluids</subject><subject>Control</subject><subject>Corridors</subject><subject>Couette flow</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Hydrodynamic stability</subject><subject>Instability</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Solid Mechanics</subject><subject>Stability</subject><subject>Subdivisions</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV9rHCEUxaU00O0mH6BvUih9mlQdHfUxLP0TCPSleRbHue66zOpWHdJ8-7pMaKHQF8Xr7xwO9yD0jpJbSoj8VNpBZEco7QgXrFOv0IYOVHeD7uVrtCGE0E5oSd6gt6Uc24tJTjfoeB_9vEB0gJPHNmL7K9gZn-w-Qg0O-wDzhFPE9QC4VDuGOdTnC1vOB8jBNXiXFqgVsJ_TU8FPoR7wFLyHDLHivT230VQP5RpdeTsXuHm5t-jxy-cfu2_dw_ev97u7h85xOtTOKSr7gZBplERPZCJWOevoOPUwjJMQbuj7kYgeuKKcKTZy6EelNdNcyJEN_RZ9XH3POf1coFRzCsXBPNsIaSlGKc2pks1mi97_Qx7TkmMLZ5QkjLUkskG3K7S3M5gQfarZtkR2glNwKYIPbX7XC8G4Fkw0AV0FLqdSMnhzzuFk87OhxFzKMmtZppVlLmUZ1TQfXpLY0lbqs40ulD9CxtlABdONYytX2lfcQ_6b-P_mvwH0eaMB</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Travnikov, V.</creator><creator>Eckert, K.</creator><creator>Odenbach, S.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110701</creationdate><title>Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths</title><author>Travnikov, V. ; Eckert, K. ; Odenbach, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-c8173600db709d0d0a8cac1bd3e6bd55c633b053e4814282b4e3b89929457b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Band gap</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Conducting fluids</topic><topic>Control</topic><topic>Corridors</topic><topic>Couette flow</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Hydrodynamic stability</topic><topic>Instability</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Solid Mechanics</topic><topic>Stability</topic><topic>Subdivisions</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Travnikov, V.</creatorcontrib><creatorcontrib>Eckert, K.</creatorcontrib><creatorcontrib>Odenbach, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Travnikov, V.</au><au>Eckert, K.</au><au>Odenbach, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>219</volume><issue>3-4</issue><spage>255</spage><epage>268</epage><pages>255-268</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios, η  = 0.5 and η  = 0.6, and compared with Hollerbach’s work for η  = 0.33 (Hollerbach in Proc R Soc 465:2003, 2009 ). The corresponding instability diagrams, i.e., the critical values of the Reynolds number Re , the wave number, and the frequency on the Hartmann number Ha , are presented and accompanied by simulation of the transition between three-dimensional flow states of different symmetries. The characteristic subdivision of the linear stability curves into anti-symmetric modes, which is responsible for the instability at small Ha , and symmetric modes occurring at higher Ha is found for larger η , too. However, the extension of the stability corridor between the anti-symmetric and the symmetric modes increases nonlinearly with η . This offers the possibility to stabilize the basic flow up to high Re by appropriately increasing Ha .</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-011-0452-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2011-07, Vol.219 (3-4), p.255-268
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_889418763
source SpringerLink Journals
subjects Analysis
Band gap
Classical and Continuum Physics
Computational fluid dynamics
Conducting fluids
Control
Corridors
Couette flow
Dynamical Systems
Engineering
Engineering Thermodynamics
Exact sciences and technology
Flow velocity
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat and Mass Transfer
Hydrodynamic stability
Instability
Magnetic fields
Physics
Reynolds number
Solid Mechanics
Stability
Subdivisions
Theoretical and Applied Mechanics
Vibration
title Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20an%20axial%20magnetic%20field%20on%20the%20stability%20of%20spherical%20Couette%20flows%20with%20different%20gap%20widths&rft.jtitle=Acta%20mechanica&rft.au=Travnikov,%20V.&rft.date=2011-07-01&rft.volume=219&rft.issue=3-4&rft.spage=255&rft.epage=268&rft.pages=255-268&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-011-0452-8&rft_dat=%3Cgale_proqu%3EA355249525%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870228177&rft_id=info:pmid/&rft_galeid=A355249525&rfr_iscdi=true