A rational approximation based on Bernstein polynomials for high order initial and boundary values problems

We introduce a new method to solve high order linear differential equations with initial and boundary conditions numerically. In this method, the approximate solution is based on rational interpolation and collocation method. Since controlling the occurrence of poles in rational interpolation is dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-07, Vol.217 (22), p.9438-9450
Hauptverfasser: Işik, Osman Raşit, Sezer, Mehmet, Güney, Zekeriya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9450
container_issue 22
container_start_page 9438
container_title Applied mathematics and computation
container_volume 217
creator Işik, Osman Raşit
Sezer, Mehmet
Güney, Zekeriya
description We introduce a new method to solve high order linear differential equations with initial and boundary conditions numerically. In this method, the approximate solution is based on rational interpolation and collocation method. Since controlling the occurrence of poles in rational interpolation is difficult, a construction which is found by Floater and Hormann [1] is used with no poles in real numbers. We use the Bernstein series solution instead of the interpolation polynomials in their construction. We find that our approximate solution has better convergence rate than the one found by using collocation method. The error of the approximate solution is given in the case of the exact solution f ∈ C d+2 [ a, b].
doi_str_mv 10.1016/j.amc.2011.04.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889418125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311005959</els_id><sourcerecordid>889418125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d9055c2676e2b4c54ef68c9dd5f49225e8a69fae6d5510fae33038042caccf933</originalsourceid><addsrcrecordid>eNp9UEtvEzEQthBIhMIP4OYL4rTb8TNrcSpVX1KlXuBsOfYsddi1g72pyL-vQyqOPc2M9D3m-wj5zKBnwPT5tnez7zkw1oPsQQxvyIoNa9EpLc1bsgIwuhMA4j35UOsWANaayRX5fUGLW2JObqJutyv5b5z_3XTjKgbalu9YUl0wJrrL0yHlObqp0jEX-hh_PdJcAhYaU1ziUSMFusn7FFw50Cc37bHSprqZcK4fybuxUfHTyzwjP6-vflzedvcPN3eXF_edF8osXTCglOd6rZFvpFcSRz14E4IapeFc4eC0GR3qoBSDtgjR8oLk3nk_GiHOyNeTbjP-0x5Y7Byrx2lyCfO-2mEwkg2Mq4ZkJ6QvudaCo92Vlr8cLAN77NVubevVHnu1IG3zaZwvL-quejeNxSUf638il1wwxnTDfTvhsEV9ilhs9RGTxxAL-sWGHF9xeQbQzI81</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889418125</pqid></control><display><type>article</type><title>A rational approximation based on Bernstein polynomials for high order initial and boundary values problems</title><source>Elsevier ScienceDirect Journals</source><creator>Işik, Osman Raşit ; Sezer, Mehmet ; Güney, Zekeriya</creator><creatorcontrib>Işik, Osman Raşit ; Sezer, Mehmet ; Güney, Zekeriya</creatorcontrib><description>We introduce a new method to solve high order linear differential equations with initial and boundary conditions numerically. In this method, the approximate solution is based on rational interpolation and collocation method. Since controlling the occurrence of poles in rational interpolation is difficult, a construction which is found by Floater and Hormann [1] is used with no poles in real numbers. We use the Bernstein series solution instead of the interpolation polynomials in their construction. We find that our approximate solution has better convergence rate than the one found by using collocation method. The error of the approximate solution is given in the case of the exact solution f ∈ C d+2 [ a, b].</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.04.038</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Approximate solution ; Approximation ; Approximations and expansions ; Bernstein polynomials ; Collocation method ; Collocation methods ; Construction ; Differential equations ; Exact sciences and technology ; Interpolation ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Poles ; Rational interpolation ; Sciences and techniques of general use</subject><ispartof>Applied mathematics and computation, 2011-07, Vol.217 (22), p.9438-9450</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d9055c2676e2b4c54ef68c9dd5f49225e8a69fae6d5510fae33038042caccf933</citedby><cites>FETCH-LOGICAL-c359t-d9055c2676e2b4c54ef68c9dd5f49225e8a69fae6d5510fae33038042caccf933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300311005959$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24231116$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Işik, Osman Raşit</creatorcontrib><creatorcontrib>Sezer, Mehmet</creatorcontrib><creatorcontrib>Güney, Zekeriya</creatorcontrib><title>A rational approximation based on Bernstein polynomials for high order initial and boundary values problems</title><title>Applied mathematics and computation</title><description>We introduce a new method to solve high order linear differential equations with initial and boundary conditions numerically. In this method, the approximate solution is based on rational interpolation and collocation method. Since controlling the occurrence of poles in rational interpolation is difficult, a construction which is found by Floater and Hormann [1] is used with no poles in real numbers. We use the Bernstein series solution instead of the interpolation polynomials in their construction. We find that our approximate solution has better convergence rate than the one found by using collocation method. The error of the approximate solution is given in the case of the exact solution f ∈ C d+2 [ a, b].</description><subject>Approximate solution</subject><subject>Approximation</subject><subject>Approximations and expansions</subject><subject>Bernstein polynomials</subject><subject>Collocation method</subject><subject>Collocation methods</subject><subject>Construction</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Poles</subject><subject>Rational interpolation</subject><subject>Sciences and techniques of general use</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UEtvEzEQthBIhMIP4OYL4rTb8TNrcSpVX1KlXuBsOfYsddi1g72pyL-vQyqOPc2M9D3m-wj5zKBnwPT5tnez7zkw1oPsQQxvyIoNa9EpLc1bsgIwuhMA4j35UOsWANaayRX5fUGLW2JObqJutyv5b5z_3XTjKgbalu9YUl0wJrrL0yHlObqp0jEX-hh_PdJcAhYaU1ziUSMFusn7FFw50Cc37bHSprqZcK4fybuxUfHTyzwjP6-vflzedvcPN3eXF_edF8osXTCglOd6rZFvpFcSRz14E4IapeFc4eC0GR3qoBSDtgjR8oLk3nk_GiHOyNeTbjP-0x5Y7Byrx2lyCfO-2mEwkg2Mq4ZkJ6QvudaCo92Vlr8cLAN77NVubevVHnu1IG3zaZwvL-quejeNxSUf638il1wwxnTDfTvhsEV9ilhs9RGTxxAL-sWGHF9xeQbQzI81</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Işik, Osman Raşit</creator><creator>Sezer, Mehmet</creator><creator>Güney, Zekeriya</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110715</creationdate><title>A rational approximation based on Bernstein polynomials for high order initial and boundary values problems</title><author>Işik, Osman Raşit ; Sezer, Mehmet ; Güney, Zekeriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d9055c2676e2b4c54ef68c9dd5f49225e8a69fae6d5510fae33038042caccf933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximate solution</topic><topic>Approximation</topic><topic>Approximations and expansions</topic><topic>Bernstein polynomials</topic><topic>Collocation method</topic><topic>Collocation methods</topic><topic>Construction</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Poles</topic><topic>Rational interpolation</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Işik, Osman Raşit</creatorcontrib><creatorcontrib>Sezer, Mehmet</creatorcontrib><creatorcontrib>Güney, Zekeriya</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Işik, Osman Raşit</au><au>Sezer, Mehmet</au><au>Güney, Zekeriya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rational approximation based on Bernstein polynomials for high order initial and boundary values problems</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-07-15</date><risdate>2011</risdate><volume>217</volume><issue>22</issue><spage>9438</spage><epage>9450</epage><pages>9438-9450</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>We introduce a new method to solve high order linear differential equations with initial and boundary conditions numerically. In this method, the approximate solution is based on rational interpolation and collocation method. Since controlling the occurrence of poles in rational interpolation is difficult, a construction which is found by Floater and Hormann [1] is used with no poles in real numbers. We use the Bernstein series solution instead of the interpolation polynomials in their construction. We find that our approximate solution has better convergence rate than the one found by using collocation method. The error of the approximate solution is given in the case of the exact solution f ∈ C d+2 [ a, b].</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.04.038</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-07, Vol.217 (22), p.9438-9450
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_889418125
source Elsevier ScienceDirect Journals
subjects Approximate solution
Approximation
Approximations and expansions
Bernstein polynomials
Collocation method
Collocation methods
Construction
Differential equations
Exact sciences and technology
Interpolation
Mathematical analysis
Mathematical models
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Poles
Rational interpolation
Sciences and techniques of general use
title A rational approximation based on Bernstein polynomials for high order initial and boundary values problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rational%20approximation%20based%20on%20Bernstein%20polynomials%20for%20high%20order%20initial%20and%20boundary%20values%20problems&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=I%C5%9Fik,%20Osman%20Ra%C5%9Fit&rft.date=2011-07-15&rft.volume=217&rft.issue=22&rft.spage=9438&rft.epage=9450&rft.pages=9438-9450&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.04.038&rft_dat=%3Cproquest_cross%3E889418125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889418125&rft_id=info:pmid/&rft_els_id=S0096300311005959&rfr_iscdi=true