Towards high-speed optical quantum memories

Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers 1 and quantum communications 2 . To date, quantum memories 3 , 4 , 5 , 6 have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2010-04, Vol.4 (4), p.218-221
Hauptverfasser: Reim, K. F., Nunn, J., Lorenz, V. O., Sussman, B. J., Lee, K. C., Langford, N. K., Jaksch, D., Walmsley, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 4
container_start_page 218
container_title Nature photonics
container_volume 4
creator Reim, K. F.
Nunn, J.
Lorenz, V. O.
Sussman, B. J.
Lee, K. C.
Langford, N. K.
Jaksch, D.
Walmsley, I. A.
description Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers 1 and quantum communications 2 . To date, quantum memories 3 , 4 , 5 , 6 have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz in caesium vapour. The novel memory interaction takes place through a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field 7 , 8 . This should allow data rates more than 100 times greater than those of existing quantum memories. The memory works with a total efficiency of 15%, and its coherence is demonstrated through direct interference of the stored and retrieved pulses. Coherence times in hot atomic vapours are on the order of microseconds 9 , the expected storage time limit for this memory. Quantum memories for storing and releasing photons are required for quantum computers and quantum communications. So far, their operational bandwidths have limited data-rates to megahertz. Researchers now demonstrate coherent storage and retrieval of subnanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz.
doi_str_mv 10.1038/nphoton.2010.30
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889416168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382028301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ce3d04bdec44cb99827c7fb95bbd57b3fff51a4ef1669b3e18519ba1a3afff243</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtnr4sgHmTbZJPsJkcpfkHBSz2HJJu0W3aTbbKL-N-b0lJB8DTDvN-8GR4AtwjOEMRs7vqNH7ybFTBNMDwDE1QRnhPG8fmpZ_QSXMW4hZBiXhQT8LjyXzLUMds0600ee2PqzPdDo2Wb7UbphrHLOtP50Jh4DS6sbKO5OdYp-Hx5Xi3e8uXH6_viaZlrgssh1wbXkKjaaEK04pwVla6s4lSpmlYKW2spksRYVJZcYYMYRVxJJLFMUkHwFDwcfPvgd6OJg-iaqE3bSmf8GAVjnKASlSyRd3_IrR-DS88JVmGMKcE8QfMDpIOPMRgr-tB0MnwLBMU-OnGMTuyjEximjfujrYwpCBuk0008rRUFZVViEwcPXEySW5vwe_4_6x_CUYDN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873335439</pqid></control><display><type>article</type><title>Towards high-speed optical quantum memories</title><source>Nature Journals Online</source><source>SpringerLink</source><creator>Reim, K. F. ; Nunn, J. ; Lorenz, V. O. ; Sussman, B. J. ; Lee, K. C. ; Langford, N. K. ; Jaksch, D. ; Walmsley, I. A.</creator><creatorcontrib>Reim, K. F. ; Nunn, J. ; Lorenz, V. O. ; Sussman, B. J. ; Lee, K. C. ; Langford, N. K. ; Jaksch, D. ; Walmsley, I. A.</creatorcontrib><description>Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers 1 and quantum communications 2 . To date, quantum memories 3 , 4 , 5 , 6 have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz in caesium vapour. The novel memory interaction takes place through a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field 7 , 8 . This should allow data rates more than 100 times greater than those of existing quantum memories. The memory works with a total efficiency of 15%, and its coherence is demonstrated through direct interference of the stored and retrieved pulses. Coherence times in hot atomic vapours are on the order of microseconds 9 , the expected storage time limit for this memory. Quantum memories for storing and releasing photons are required for quantum computers and quantum communications. So far, their operational bandwidths have limited data-rates to megahertz. Researchers now demonstrate coherent storage and retrieval of subnanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2010.30</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/482 ; 639/766/483/481 ; Applied and Technical Physics ; Band spectra ; Classical and quantum physics: mechanics and fields ; Coherence ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; High speed ; letter ; Optical memory (data storage) ; Optics ; Photons ; Physics ; Physics and Astronomy ; Quantum computation ; Quantum information ; Quantum optics ; Quantum Physics ; Releasing ; Spectra ; Vapour</subject><ispartof>Nature photonics, 2010-04, Vol.4 (4), p.218-221</ispartof><rights>Springer Nature Limited 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ce3d04bdec44cb99827c7fb95bbd57b3fff51a4ef1669b3e18519ba1a3afff243</citedby><cites>FETCH-LOGICAL-c436t-ce3d04bdec44cb99827c7fb95bbd57b3fff51a4ef1669b3e18519ba1a3afff243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2010.30$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2010.30$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22587201$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reim, K. F.</creatorcontrib><creatorcontrib>Nunn, J.</creatorcontrib><creatorcontrib>Lorenz, V. O.</creatorcontrib><creatorcontrib>Sussman, B. J.</creatorcontrib><creatorcontrib>Lee, K. C.</creatorcontrib><creatorcontrib>Langford, N. K.</creatorcontrib><creatorcontrib>Jaksch, D.</creatorcontrib><creatorcontrib>Walmsley, I. A.</creatorcontrib><title>Towards high-speed optical quantum memories</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers 1 and quantum communications 2 . To date, quantum memories 3 , 4 , 5 , 6 have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz in caesium vapour. The novel memory interaction takes place through a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field 7 , 8 . This should allow data rates more than 100 times greater than those of existing quantum memories. The memory works with a total efficiency of 15%, and its coherence is demonstrated through direct interference of the stored and retrieved pulses. Coherence times in hot atomic vapours are on the order of microseconds 9 , the expected storage time limit for this memory. Quantum memories for storing and releasing photons are required for quantum computers and quantum communications. So far, their operational bandwidths have limited data-rates to megahertz. Researchers now demonstrate coherent storage and retrieval of subnanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz.</description><subject>639/624/400/482</subject><subject>639/766/483/481</subject><subject>Applied and Technical Physics</subject><subject>Band spectra</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Coherence</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High speed</subject><subject>letter</subject><subject>Optical memory (data storage)</subject><subject>Optics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computation</subject><subject>Quantum information</subject><subject>Quantum optics</subject><subject>Quantum Physics</subject><subject>Releasing</subject><subject>Spectra</subject><subject>Vapour</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1LAzEQxYMoWKtnr4sgHmTbZJPsJkcpfkHBSz2HJJu0W3aTbbKL-N-b0lJB8DTDvN-8GR4AtwjOEMRs7vqNH7ybFTBNMDwDE1QRnhPG8fmpZ_QSXMW4hZBiXhQT8LjyXzLUMds0600ee2PqzPdDo2Wb7UbphrHLOtP50Jh4DS6sbKO5OdYp-Hx5Xi3e8uXH6_viaZlrgssh1wbXkKjaaEK04pwVla6s4lSpmlYKW2spksRYVJZcYYMYRVxJJLFMUkHwFDwcfPvgd6OJg-iaqE3bSmf8GAVjnKASlSyRd3_IrR-DS88JVmGMKcE8QfMDpIOPMRgr-tB0MnwLBMU-OnGMTuyjEximjfujrYwpCBuk0008rRUFZVViEwcPXEySW5vwe_4_6x_CUYDN</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Reim, K. F.</creator><creator>Nunn, J.</creator><creator>Lorenz, V. O.</creator><creator>Sussman, B. J.</creator><creator>Lee, K. C.</creator><creator>Langford, N. K.</creator><creator>Jaksch, D.</creator><creator>Walmsley, I. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100401</creationdate><title>Towards high-speed optical quantum memories</title><author>Reim, K. F. ; Nunn, J. ; Lorenz, V. O. ; Sussman, B. J. ; Lee, K. C. ; Langford, N. K. ; Jaksch, D. ; Walmsley, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ce3d04bdec44cb99827c7fb95bbd57b3fff51a4ef1669b3e18519ba1a3afff243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/624/400/482</topic><topic>639/766/483/481</topic><topic>Applied and Technical Physics</topic><topic>Band spectra</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Coherence</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High speed</topic><topic>letter</topic><topic>Optical memory (data storage)</topic><topic>Optics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computation</topic><topic>Quantum information</topic><topic>Quantum optics</topic><topic>Quantum Physics</topic><topic>Releasing</topic><topic>Spectra</topic><topic>Vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reim, K. F.</creatorcontrib><creatorcontrib>Nunn, J.</creatorcontrib><creatorcontrib>Lorenz, V. O.</creatorcontrib><creatorcontrib>Sussman, B. J.</creatorcontrib><creatorcontrib>Lee, K. C.</creatorcontrib><creatorcontrib>Langford, N. K.</creatorcontrib><creatorcontrib>Jaksch, D.</creatorcontrib><creatorcontrib>Walmsley, I. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reim, K. F.</au><au>Nunn, J.</au><au>Lorenz, V. O.</au><au>Sussman, B. J.</au><au>Lee, K. C.</au><au>Langford, N. K.</au><au>Jaksch, D.</au><au>Walmsley, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards high-speed optical quantum memories</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>4</volume><issue>4</issue><spage>218</spage><epage>221</epage><pages>218-221</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers 1 and quantum communications 2 . To date, quantum memories 3 , 4 , 5 , 6 have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz in caesium vapour. The novel memory interaction takes place through a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field 7 , 8 . This should allow data rates more than 100 times greater than those of existing quantum memories. The memory works with a total efficiency of 15%, and its coherence is demonstrated through direct interference of the stored and retrieved pulses. Coherence times in hot atomic vapours are on the order of microseconds 9 , the expected storage time limit for this memory. Quantum memories for storing and releasing photons are required for quantum computers and quantum communications. So far, their operational bandwidths have limited data-rates to megahertz. Researchers now demonstrate coherent storage and retrieval of subnanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2010.30</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2010-04, Vol.4 (4), p.218-221
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_miscellaneous_889416168
source Nature Journals Online; SpringerLink
subjects 639/624/400/482
639/766/483/481
Applied and Technical Physics
Band spectra
Classical and quantum physics: mechanics and fields
Coherence
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
High speed
letter
Optical memory (data storage)
Optics
Photons
Physics
Physics and Astronomy
Quantum computation
Quantum information
Quantum optics
Quantum Physics
Releasing
Spectra
Vapour
title Towards high-speed optical quantum memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20high-speed%20optical%20quantum%20memories&rft.jtitle=Nature%20photonics&rft.au=Reim,%20K.%20F.&rft.date=2010-04-01&rft.volume=4&rft.issue=4&rft.spage=218&rft.epage=221&rft.pages=218-221&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2010.30&rft_dat=%3Cproquest_cross%3E2382028301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873335439&rft_id=info:pmid/&rfr_iscdi=true