Towards high-speed optical quantum memories
Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers 1 and quantum communications 2 . To date, quantum memories 3 , 4 , 5 , 6 have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and r...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2010-04, Vol.4 (4), p.218-221 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 4 |
container_start_page | 218 |
container_title | Nature photonics |
container_volume | 4 |
creator | Reim, K. F. Nunn, J. Lorenz, V. O. Sussman, B. J. Lee, K. C. Langford, N. K. Jaksch, D. Walmsley, I. A. |
description | Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers
1
and quantum communications
2
. To date, quantum memories
3
,
4
,
5
,
6
have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz in caesium vapour. The novel memory interaction takes place through a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field
7
,
8
. This should allow data rates more than 100 times greater than those of existing quantum memories. The memory works with a total efficiency of 15%, and its coherence is demonstrated through direct interference of the stored and retrieved pulses. Coherence times in hot atomic vapours are on the order of microseconds
9
, the expected storage time limit for this memory.
Quantum memories for storing and releasing photons are required for quantum computers and quantum communications. So far, their operational bandwidths have limited data-rates to megahertz. Researchers now demonstrate coherent storage and retrieval of subnanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz. |
doi_str_mv | 10.1038/nphoton.2010.30 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889416168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382028301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ce3d04bdec44cb99827c7fb95bbd57b3fff51a4ef1669b3e18519ba1a3afff243</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtnr4sgHmTbZJPsJkcpfkHBSz2HJJu0W3aTbbKL-N-b0lJB8DTDvN-8GR4AtwjOEMRs7vqNH7ybFTBNMDwDE1QRnhPG8fmpZ_QSXMW4hZBiXhQT8LjyXzLUMds0600ee2PqzPdDo2Wb7UbphrHLOtP50Jh4DS6sbKO5OdYp-Hx5Xi3e8uXH6_viaZlrgssh1wbXkKjaaEK04pwVla6s4lSpmlYKW2spksRYVJZcYYMYRVxJJLFMUkHwFDwcfPvgd6OJg-iaqE3bSmf8GAVjnKASlSyRd3_IrR-DS88JVmGMKcE8QfMDpIOPMRgr-tB0MnwLBMU-OnGMTuyjEximjfujrYwpCBuk0008rRUFZVViEwcPXEySW5vwe_4_6x_CUYDN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873335439</pqid></control><display><type>article</type><title>Towards high-speed optical quantum memories</title><source>Nature Journals Online</source><source>SpringerLink</source><creator>Reim, K. F. ; Nunn, J. ; Lorenz, V. O. ; Sussman, B. J. ; Lee, K. C. ; Langford, N. K. ; Jaksch, D. ; Walmsley, I. A.</creator><creatorcontrib>Reim, K. F. ; Nunn, J. ; Lorenz, V. O. ; Sussman, B. J. ; Lee, K. C. ; Langford, N. K. ; Jaksch, D. ; Walmsley, I. A.</creatorcontrib><description>Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers
1
and quantum communications
2
. To date, quantum memories
3
,
4
,
5
,
6
have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz in caesium vapour. The novel memory interaction takes place through a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field
7
,
8
. This should allow data rates more than 100 times greater than those of existing quantum memories. The memory works with a total efficiency of 15%, and its coherence is demonstrated through direct interference of the stored and retrieved pulses. Coherence times in hot atomic vapours are on the order of microseconds
9
, the expected storage time limit for this memory.
Quantum memories for storing and releasing photons are required for quantum computers and quantum communications. So far, their operational bandwidths have limited data-rates to megahertz. Researchers now demonstrate coherent storage and retrieval of subnanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2010.30</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/482 ; 639/766/483/481 ; Applied and Technical Physics ; Band spectra ; Classical and quantum physics: mechanics and fields ; Coherence ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; High speed ; letter ; Optical memory (data storage) ; Optics ; Photons ; Physics ; Physics and Astronomy ; Quantum computation ; Quantum information ; Quantum optics ; Quantum Physics ; Releasing ; Spectra ; Vapour</subject><ispartof>Nature photonics, 2010-04, Vol.4 (4), p.218-221</ispartof><rights>Springer Nature Limited 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ce3d04bdec44cb99827c7fb95bbd57b3fff51a4ef1669b3e18519ba1a3afff243</citedby><cites>FETCH-LOGICAL-c436t-ce3d04bdec44cb99827c7fb95bbd57b3fff51a4ef1669b3e18519ba1a3afff243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2010.30$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2010.30$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22587201$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reim, K. F.</creatorcontrib><creatorcontrib>Nunn, J.</creatorcontrib><creatorcontrib>Lorenz, V. O.</creatorcontrib><creatorcontrib>Sussman, B. J.</creatorcontrib><creatorcontrib>Lee, K. C.</creatorcontrib><creatorcontrib>Langford, N. K.</creatorcontrib><creatorcontrib>Jaksch, D.</creatorcontrib><creatorcontrib>Walmsley, I. A.</creatorcontrib><title>Towards high-speed optical quantum memories</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers
1
and quantum communications
2
. To date, quantum memories
3
,
4
,
5
,
6
have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz in caesium vapour. The novel memory interaction takes place through a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field
7
,
8
. This should allow data rates more than 100 times greater than those of existing quantum memories. The memory works with a total efficiency of 15%, and its coherence is demonstrated through direct interference of the stored and retrieved pulses. Coherence times in hot atomic vapours are on the order of microseconds
9
, the expected storage time limit for this memory.
Quantum memories for storing and releasing photons are required for quantum computers and quantum communications. So far, their operational bandwidths have limited data-rates to megahertz. Researchers now demonstrate coherent storage and retrieval of subnanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz.</description><subject>639/624/400/482</subject><subject>639/766/483/481</subject><subject>Applied and Technical Physics</subject><subject>Band spectra</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Coherence</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High speed</subject><subject>letter</subject><subject>Optical memory (data storage)</subject><subject>Optics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computation</subject><subject>Quantum information</subject><subject>Quantum optics</subject><subject>Quantum Physics</subject><subject>Releasing</subject><subject>Spectra</subject><subject>Vapour</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1LAzEQxYMoWKtnr4sgHmTbZJPsJkcpfkHBSz2HJJu0W3aTbbKL-N-b0lJB8DTDvN-8GR4AtwjOEMRs7vqNH7ybFTBNMDwDE1QRnhPG8fmpZ_QSXMW4hZBiXhQT8LjyXzLUMds0600ee2PqzPdDo2Wb7UbphrHLOtP50Jh4DS6sbKO5OdYp-Hx5Xi3e8uXH6_viaZlrgssh1wbXkKjaaEK04pwVla6s4lSpmlYKW2spksRYVJZcYYMYRVxJJLFMUkHwFDwcfPvgd6OJg-iaqE3bSmf8GAVjnKASlSyRd3_IrR-DS88JVmGMKcE8QfMDpIOPMRgr-tB0MnwLBMU-OnGMTuyjEximjfujrYwpCBuk0008rRUFZVViEwcPXEySW5vwe_4_6x_CUYDN</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Reim, K. F.</creator><creator>Nunn, J.</creator><creator>Lorenz, V. O.</creator><creator>Sussman, B. J.</creator><creator>Lee, K. C.</creator><creator>Langford, N. K.</creator><creator>Jaksch, D.</creator><creator>Walmsley, I. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100401</creationdate><title>Towards high-speed optical quantum memories</title><author>Reim, K. F. ; Nunn, J. ; Lorenz, V. O. ; Sussman, B. J. ; Lee, K. C. ; Langford, N. K. ; Jaksch, D. ; Walmsley, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ce3d04bdec44cb99827c7fb95bbd57b3fff51a4ef1669b3e18519ba1a3afff243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/624/400/482</topic><topic>639/766/483/481</topic><topic>Applied and Technical Physics</topic><topic>Band spectra</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Coherence</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High speed</topic><topic>letter</topic><topic>Optical memory (data storage)</topic><topic>Optics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computation</topic><topic>Quantum information</topic><topic>Quantum optics</topic><topic>Quantum Physics</topic><topic>Releasing</topic><topic>Spectra</topic><topic>Vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reim, K. F.</creatorcontrib><creatorcontrib>Nunn, J.</creatorcontrib><creatorcontrib>Lorenz, V. O.</creatorcontrib><creatorcontrib>Sussman, B. J.</creatorcontrib><creatorcontrib>Lee, K. C.</creatorcontrib><creatorcontrib>Langford, N. K.</creatorcontrib><creatorcontrib>Jaksch, D.</creatorcontrib><creatorcontrib>Walmsley, I. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reim, K. F.</au><au>Nunn, J.</au><au>Lorenz, V. O.</au><au>Sussman, B. J.</au><au>Lee, K. C.</au><au>Langford, N. K.</au><au>Jaksch, D.</au><au>Walmsley, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards high-speed optical quantum memories</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>4</volume><issue>4</issue><spage>218</spage><epage>221</epage><pages>218-221</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers
1
and quantum communications
2
. To date, quantum memories
3
,
4
,
5
,
6
have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz in caesium vapour. The novel memory interaction takes place through a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field
7
,
8
. This should allow data rates more than 100 times greater than those of existing quantum memories. The memory works with a total efficiency of 15%, and its coherence is demonstrated through direct interference of the stored and retrieved pulses. Coherence times in hot atomic vapours are on the order of microseconds
9
, the expected storage time limit for this memory.
Quantum memories for storing and releasing photons are required for quantum computers and quantum communications. So far, their operational bandwidths have limited data-rates to megahertz. Researchers now demonstrate coherent storage and retrieval of subnanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2010.30</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2010-04, Vol.4 (4), p.218-221 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_miscellaneous_889416168 |
source | Nature Journals Online; SpringerLink |
subjects | 639/624/400/482 639/766/483/481 Applied and Technical Physics Band spectra Classical and quantum physics: mechanics and fields Coherence Exact sciences and technology Fundamental areas of phenomenology (including applications) High speed letter Optical memory (data storage) Optics Photons Physics Physics and Astronomy Quantum computation Quantum information Quantum optics Quantum Physics Releasing Spectra Vapour |
title | Towards high-speed optical quantum memories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20high-speed%20optical%20quantum%20memories&rft.jtitle=Nature%20photonics&rft.au=Reim,%20K.%20F.&rft.date=2010-04-01&rft.volume=4&rft.issue=4&rft.spage=218&rft.epage=221&rft.pages=218-221&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2010.30&rft_dat=%3Cproquest_cross%3E2382028301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873335439&rft_id=info:pmid/&rfr_iscdi=true |