Stabilizing Unknown Periodic Orbits of a Chaotic Spiking Oscillator

In this paper, we propose a simple nonlinear system which consists of a chaotic spiking oscillator and a controlling circuit to stabilize unknown periodic orbits. Our proposed system generates various stabilized unknown Unstable Periodic Orbits which are embedded on the chaotic attractor of the orig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2009/05/01, Vol.E92.A(5), pp.1316-1321
Hauptverfasser: TSUBONE, Tadashi, WADA, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321
container_issue 5
container_start_page 1316
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E92.A
creator TSUBONE, Tadashi
WADA, Yasuhiro
description In this paper, we propose a simple nonlinear system which consists of a chaotic spiking oscillator and a controlling circuit to stabilize unknown periodic orbits. Our proposed system generates various stabilized unknown Unstable Periodic Orbits which are embedded on the chaotic attractor of the original chaotic spiking oscillator. The proposed system is simple and exhibits various bifurcation phenomena. The dynamics of the system is governed by 1-D piecewise linear return map. Therefore, the rigorous analysis can be performed. We provide conditions for stability and almost complete analysis for bifurcation and co-existence phenomena by using the 1-D return map. An implementation example of the controlled chaotic spiking oscillator is provided to confirm some theoretical results.
doi_str_mv 10.1587/transfun.E92.A.1316
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889413251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889413251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-25fb51ef7e2c3e04ff5bee51f64c819e519623701225f7960ea279b5f5dc00c23</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKu_wMvePO2aSTb7cSyLX1ioUHsO2TRp0243NUkR_fVmqfbgaYbheYaZF6FbwBmwqrwPTvReH_rsoSbZJAMKxRkaQZmzFCgtz9EI11CkFcPVJbryfoMxVATyEWrmQbSmM9-mXyWLftvbzz55U87YpZHJzLUm-MTqRCTNWtgQZ_O92Q7wzEvTdSJYd40utOi8uvmtY7R4fHhvntPp7OmlmUxTyaAIKWG6ZaB0qYikCudas1YpBrrIZQV17OqC0BIDiWRZF1gJUtYt02wpMZaEjtHdce_e2Y-D8oHvjJcqHtEre_C8quocKGEQSXokpbPeO6X53pmdcF8cMB8S43-J8ZgYn_AhsWi9Hq2ND2KlTo5w8e9O_XfYqQ72iZJr4bjq6Q9egnzP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889413251</pqid></control><display><type>article</type><title>Stabilizing Unknown Periodic Orbits of a Chaotic Spiking Oscillator</title><source>J-STAGE Free</source><creator>TSUBONE, Tadashi ; WADA, Yasuhiro</creator><creatorcontrib>TSUBONE, Tadashi ; WADA, Yasuhiro</creatorcontrib><description>In this paper, we propose a simple nonlinear system which consists of a chaotic spiking oscillator and a controlling circuit to stabilize unknown periodic orbits. Our proposed system generates various stabilized unknown Unstable Periodic Orbits which are embedded on the chaotic attractor of the original chaotic spiking oscillator. The proposed system is simple and exhibits various bifurcation phenomena. The dynamics of the system is governed by 1-D piecewise linear return map. Therefore, the rigorous analysis can be performed. We provide conditions for stability and almost complete analysis for bifurcation and co-existence phenomena by using the 1-D return map. An implementation example of the controlled chaotic spiking oscillator is provided to confirm some theoretical results.</description><identifier>ISSN: 0916-8508</identifier><identifier>ISSN: 1745-1337</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.E92.A.1316</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Bifurcations ; chaos ; Chaos theory ; Dynamical systems ; Dynamics ; Nonlinear dynamics ; Orbits ; Oscillators ; Spiking ; spiking oscillator ; stabilization ; unknown steady state ; unstable periodic orbit</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2009/05/01, Vol.E92.A(5), pp.1316-1321</ispartof><rights>2009 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-25fb51ef7e2c3e04ff5bee51f64c819e519623701225f7960ea279b5f5dc00c23</citedby><cites>FETCH-LOGICAL-c516t-25fb51ef7e2c3e04ff5bee51f64c819e519623701225f7960ea279b5f5dc00c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>TSUBONE, Tadashi</creatorcontrib><creatorcontrib>WADA, Yasuhiro</creatorcontrib><title>Stabilizing Unknown Periodic Orbits of a Chaotic Spiking Oscillator</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>In this paper, we propose a simple nonlinear system which consists of a chaotic spiking oscillator and a controlling circuit to stabilize unknown periodic orbits. Our proposed system generates various stabilized unknown Unstable Periodic Orbits which are embedded on the chaotic attractor of the original chaotic spiking oscillator. The proposed system is simple and exhibits various bifurcation phenomena. The dynamics of the system is governed by 1-D piecewise linear return map. Therefore, the rigorous analysis can be performed. We provide conditions for stability and almost complete analysis for bifurcation and co-existence phenomena by using the 1-D return map. An implementation example of the controlled chaotic spiking oscillator is provided to confirm some theoretical results.</description><subject>Bifurcations</subject><subject>chaos</subject><subject>Chaos theory</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Nonlinear dynamics</subject><subject>Orbits</subject><subject>Oscillators</subject><subject>Spiking</subject><subject>spiking oscillator</subject><subject>stabilization</subject><subject>unknown steady state</subject><subject>unstable periodic orbit</subject><issn>0916-8508</issn><issn>1745-1337</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKu_wMvePO2aSTb7cSyLX1ioUHsO2TRp0243NUkR_fVmqfbgaYbheYaZF6FbwBmwqrwPTvReH_rsoSbZJAMKxRkaQZmzFCgtz9EI11CkFcPVJbryfoMxVATyEWrmQbSmM9-mXyWLftvbzz55U87YpZHJzLUm-MTqRCTNWtgQZ_O92Q7wzEvTdSJYd40utOi8uvmtY7R4fHhvntPp7OmlmUxTyaAIKWG6ZaB0qYikCudas1YpBrrIZQV17OqC0BIDiWRZF1gJUtYt02wpMZaEjtHdce_e2Y-D8oHvjJcqHtEre_C8quocKGEQSXokpbPeO6X53pmdcF8cMB8S43-J8ZgYn_AhsWi9Hq2ND2KlTo5w8e9O_XfYqQ72iZJr4bjq6Q9egnzP</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>TSUBONE, Tadashi</creator><creator>WADA, Yasuhiro</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>Stabilizing Unknown Periodic Orbits of a Chaotic Spiking Oscillator</title><author>TSUBONE, Tadashi ; WADA, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-25fb51ef7e2c3e04ff5bee51f64c819e519623701225f7960ea279b5f5dc00c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bifurcations</topic><topic>chaos</topic><topic>Chaos theory</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Nonlinear dynamics</topic><topic>Orbits</topic><topic>Oscillators</topic><topic>Spiking</topic><topic>spiking oscillator</topic><topic>stabilization</topic><topic>unknown steady state</topic><topic>unstable periodic orbit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSUBONE, Tadashi</creatorcontrib><creatorcontrib>WADA, Yasuhiro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TSUBONE, Tadashi</au><au>WADA, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing Unknown Periodic Orbits of a Chaotic Spiking Oscillator</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2009</date><risdate>2009</risdate><volume>E92.A</volume><issue>5</issue><spage>1316</spage><epage>1321</epage><pages>1316-1321</pages><issn>0916-8508</issn><issn>1745-1337</issn><eissn>1745-1337</eissn><abstract>In this paper, we propose a simple nonlinear system which consists of a chaotic spiking oscillator and a controlling circuit to stabilize unknown periodic orbits. Our proposed system generates various stabilized unknown Unstable Periodic Orbits which are embedded on the chaotic attractor of the original chaotic spiking oscillator. The proposed system is simple and exhibits various bifurcation phenomena. The dynamics of the system is governed by 1-D piecewise linear return map. Therefore, the rigorous analysis can be performed. We provide conditions for stability and almost complete analysis for bifurcation and co-existence phenomena by using the 1-D return map. An implementation example of the controlled chaotic spiking oscillator is provided to confirm some theoretical results.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.E92.A.1316</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2009/05/01, Vol.E92.A(5), pp.1316-1321
issn 0916-8508
1745-1337
1745-1337
language eng
recordid cdi_proquest_miscellaneous_889413251
source J-STAGE Free
subjects Bifurcations
chaos
Chaos theory
Dynamical systems
Dynamics
Nonlinear dynamics
Orbits
Oscillators
Spiking
spiking oscillator
stabilization
unknown steady state
unstable periodic orbit
title Stabilizing Unknown Periodic Orbits of a Chaotic Spiking Oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20Unknown%20Periodic%20Orbits%20of%20a%20Chaotic%20Spiking%20Oscillator&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=TSUBONE,%20Tadashi&rft.date=2009&rft.volume=E92.A&rft.issue=5&rft.spage=1316&rft.epage=1321&rft.pages=1316-1321&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.E92.A.1316&rft_dat=%3Cproquest_cross%3E889413251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889413251&rft_id=info:pmid/&rfr_iscdi=true