Nonlinear control for magnetic levitation of automotive engine vales
Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2006-03, Vol.14 (2), p.346-354 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 2 |
container_start_page | 346 |
container_title | IEEE transactions on control systems technology |
container_volume | 14 |
creator | Peterson, K.S. Grizzle, J.W. Stefanopoulou, A.G. |
description | Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuition from classical LQR control. The CLF is used with Sontag's universal stabilizing feedback to provide enhanced transient performance farther away from the origin than was achieved with the LQR controller. |
doi_str_mv | 10.1109/TCST.2005.863669 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889412290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1597206</ieee_id><sourcerecordid>889412290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-6d546b1df61b5d5a51edd55f0a3bf6746ed27dec0f9a4a383139f8d0a2ce1e413</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVooanbeyGXpdDmtI6-Risdi9N8QGgPcc9C1o6CwlpKpbWh_74yDgR6KDnNwDzvC8NDyCdGl4xRc7Fe3a-XnFJYaiWUMifklAHonmoFb9pOlegVCPWOvK_1kVImgQ-n5PJHTlNM6Ernc5pLnrqQS7d1Dwnn6LsJ93F2c8ypy6Fzuzlv8xz32GF6aLFu7yasH8jb4KaKH5_ngvy6-r5e3fR3P69vV9_uei81nXs1glQbNgbFNjCCA4bjCBCoE5ugBqlw5MOIngbjpBNaMGGCHqnjHhlKJhbk_Nj7VPLvHdbZbmP1OE0uYd5Vq7WRjHNDG_n1vyTXBgbBzStAKrWQsoGf_wEf866k9q7VqlWBAt4geoR8ybUWDPapxK0rfyyj9qDJHjTZgyZ71NQiX557XfVuCsUlH-tLbgAwsslbkLMjFxHx5Qxm4O36F5pgmu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867325652</pqid></control><display><type>article</type><title>Nonlinear control for magnetic levitation of automotive engine vales</title><source>IEEE Electronic Library (IEL)</source><creator>Peterson, K.S. ; Grizzle, J.W. ; Stefanopoulou, A.G.</creator><creatorcontrib>Peterson, K.S. ; Grizzle, J.W. ; Stefanopoulou, A.G.</creatorcontrib><description>Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuition from classical LQR control. The CLF is used with Sontag's universal stabilizing feedback to provide enhanced transient performance farther away from the origin than was achieved with the LQR controller.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2005.863669</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Applied sciences ; Automotive engineering ; Coils ; Computer science; control theory; systems ; Control ; Control system synthesis ; Control systems ; Control theory ; Control theory. Systems ; Design engineering ; Electrical engineering. Electrical power engineering ; Electromagnets ; engines ; Exact sciences and technology ; Feedback ; Internal combustion engines ; Lyapunov functions ; Lyapunov method ; Magnetic flux ; Magnetic levitation ; nonlinear systems ; optimal control ; Riccati equations ; Transient performance ; Valves ; Various equipment and components</subject><ispartof>IEEE transactions on control systems technology, 2006-03, Vol.14 (2), p.346-354</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-6d546b1df61b5d5a51edd55f0a3bf6746ed27dec0f9a4a383139f8d0a2ce1e413</citedby><cites>FETCH-LOGICAL-c480t-6d546b1df61b5d5a51edd55f0a3bf6746ed27dec0f9a4a383139f8d0a2ce1e413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1597206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1597206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17559406$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, K.S.</creatorcontrib><creatorcontrib>Grizzle, J.W.</creatorcontrib><creatorcontrib>Stefanopoulou, A.G.</creatorcontrib><title>Nonlinear control for magnetic levitation of automotive engine vales</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuition from classical LQR control. The CLF is used with Sontag's universal stabilizing feedback to provide enhanced transient performance farther away from the origin than was achieved with the LQR controller.</description><subject>Actuators</subject><subject>Applied sciences</subject><subject>Automotive engineering</subject><subject>Coils</subject><subject>Computer science; control theory; systems</subject><subject>Control</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Control theory. Systems</subject><subject>Design engineering</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>engines</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Internal combustion engines</subject><subject>Lyapunov functions</subject><subject>Lyapunov method</subject><subject>Magnetic flux</subject><subject>Magnetic levitation</subject><subject>nonlinear systems</subject><subject>optimal control</subject><subject>Riccati equations</subject><subject>Transient performance</subject><subject>Valves</subject><subject>Various equipment and components</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1rGzEQhkVooanbeyGXpdDmtI6-Risdi9N8QGgPcc9C1o6CwlpKpbWh_74yDgR6KDnNwDzvC8NDyCdGl4xRc7Fe3a-XnFJYaiWUMifklAHonmoFb9pOlegVCPWOvK_1kVImgQ-n5PJHTlNM6Ernc5pLnrqQS7d1Dwnn6LsJ93F2c8ypy6Fzuzlv8xz32GF6aLFu7yasH8jb4KaKH5_ngvy6-r5e3fR3P69vV9_uei81nXs1glQbNgbFNjCCA4bjCBCoE5ugBqlw5MOIngbjpBNaMGGCHqnjHhlKJhbk_Nj7VPLvHdbZbmP1OE0uYd5Vq7WRjHNDG_n1vyTXBgbBzStAKrWQsoGf_wEf866k9q7VqlWBAt4geoR8ybUWDPapxK0rfyyj9qDJHjTZgyZ71NQiX557XfVuCsUlH-tLbgAwsslbkLMjFxHx5Qxm4O36F5pgmu4</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Peterson, K.S.</creator><creator>Grizzle, J.W.</creator><creator>Stefanopoulou, A.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20060301</creationdate><title>Nonlinear control for magnetic levitation of automotive engine vales</title><author>Peterson, K.S. ; Grizzle, J.W. ; Stefanopoulou, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-6d546b1df61b5d5a51edd55f0a3bf6746ed27dec0f9a4a383139f8d0a2ce1e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actuators</topic><topic>Applied sciences</topic><topic>Automotive engineering</topic><topic>Coils</topic><topic>Computer science; control theory; systems</topic><topic>Control</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Control theory. Systems</topic><topic>Design engineering</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>engines</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Internal combustion engines</topic><topic>Lyapunov functions</topic><topic>Lyapunov method</topic><topic>Magnetic flux</topic><topic>Magnetic levitation</topic><topic>nonlinear systems</topic><topic>optimal control</topic><topic>Riccati equations</topic><topic>Transient performance</topic><topic>Valves</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, K.S.</creatorcontrib><creatorcontrib>Grizzle, J.W.</creatorcontrib><creatorcontrib>Stefanopoulou, A.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peterson, K.S.</au><au>Grizzle, J.W.</au><au>Stefanopoulou, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear control for magnetic levitation of automotive engine vales</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2006-03-01</date><risdate>2006</risdate><volume>14</volume><issue>2</issue><spage>346</spage><epage>354</epage><pages>346-354</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuition from classical LQR control. The CLF is used with Sontag's universal stabilizing feedback to provide enhanced transient performance farther away from the origin than was achieved with the LQR controller.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2005.863669</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2006-03, Vol.14 (2), p.346-354 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_miscellaneous_889412290 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Applied sciences Automotive engineering Coils Computer science control theory systems Control Control system synthesis Control systems Control theory Control theory. Systems Design engineering Electrical engineering. Electrical power engineering Electromagnets engines Exact sciences and technology Feedback Internal combustion engines Lyapunov functions Lyapunov method Magnetic flux Magnetic levitation nonlinear systems optimal control Riccati equations Transient performance Valves Various equipment and components |
title | Nonlinear control for magnetic levitation of automotive engine vales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20control%20for%20magnetic%20levitation%20of%20automotive%20engine%20vales&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Peterson,%20K.S.&rft.date=2006-03-01&rft.volume=14&rft.issue=2&rft.spage=346&rft.epage=354&rft.pages=346-354&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2005.863669&rft_dat=%3Cproquest_RIE%3E889412290%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867325652&rft_id=info:pmid/&rft_ieee_id=1597206&rfr_iscdi=true |