Nonlinear control for magnetic levitation of automotive engine vales

Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2006-03, Vol.14 (2), p.346-354
Hauptverfasser: Peterson, K.S., Grizzle, J.W., Stefanopoulou, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 2
container_start_page 346
container_title IEEE transactions on control systems technology
container_volume 14
creator Peterson, K.S.
Grizzle, J.W.
Stefanopoulou, A.G.
description Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuition from classical LQR control. The CLF is used with Sontag's universal stabilizing feedback to provide enhanced transient performance farther away from the origin than was achieved with the LQR controller.
doi_str_mv 10.1109/TCST.2005.863669
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889412290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1597206</ieee_id><sourcerecordid>889412290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-6d546b1df61b5d5a51edd55f0a3bf6746ed27dec0f9a4a383139f8d0a2ce1e413</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVooanbeyGXpdDmtI6-Risdi9N8QGgPcc9C1o6CwlpKpbWh_74yDgR6KDnNwDzvC8NDyCdGl4xRc7Fe3a-XnFJYaiWUMifklAHonmoFb9pOlegVCPWOvK_1kVImgQ-n5PJHTlNM6Ernc5pLnrqQS7d1Dwnn6LsJ93F2c8ypy6Fzuzlv8xz32GF6aLFu7yasH8jb4KaKH5_ngvy6-r5e3fR3P69vV9_uei81nXs1glQbNgbFNjCCA4bjCBCoE5ugBqlw5MOIngbjpBNaMGGCHqnjHhlKJhbk_Nj7VPLvHdbZbmP1OE0uYd5Vq7WRjHNDG_n1vyTXBgbBzStAKrWQsoGf_wEf866k9q7VqlWBAt4geoR8ybUWDPapxK0rfyyj9qDJHjTZgyZ71NQiX557XfVuCsUlH-tLbgAwsslbkLMjFxHx5Qxm4O36F5pgmu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867325652</pqid></control><display><type>article</type><title>Nonlinear control for magnetic levitation of automotive engine vales</title><source>IEEE Electronic Library (IEL)</source><creator>Peterson, K.S. ; Grizzle, J.W. ; Stefanopoulou, A.G.</creator><creatorcontrib>Peterson, K.S. ; Grizzle, J.W. ; Stefanopoulou, A.G.</creatorcontrib><description>Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuition from classical LQR control. The CLF is used with Sontag's universal stabilizing feedback to provide enhanced transient performance farther away from the origin than was achieved with the LQR controller.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2005.863669</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Applied sciences ; Automotive engineering ; Coils ; Computer science; control theory; systems ; Control ; Control system synthesis ; Control systems ; Control theory ; Control theory. Systems ; Design engineering ; Electrical engineering. Electrical power engineering ; Electromagnets ; engines ; Exact sciences and technology ; Feedback ; Internal combustion engines ; Lyapunov functions ; Lyapunov method ; Magnetic flux ; Magnetic levitation ; nonlinear systems ; optimal control ; Riccati equations ; Transient performance ; Valves ; Various equipment and components</subject><ispartof>IEEE transactions on control systems technology, 2006-03, Vol.14 (2), p.346-354</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-6d546b1df61b5d5a51edd55f0a3bf6746ed27dec0f9a4a383139f8d0a2ce1e413</citedby><cites>FETCH-LOGICAL-c480t-6d546b1df61b5d5a51edd55f0a3bf6746ed27dec0f9a4a383139f8d0a2ce1e413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1597206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1597206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17559406$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, K.S.</creatorcontrib><creatorcontrib>Grizzle, J.W.</creatorcontrib><creatorcontrib>Stefanopoulou, A.G.</creatorcontrib><title>Nonlinear control for magnetic levitation of automotive engine vales</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuition from classical LQR control. The CLF is used with Sontag's universal stabilizing feedback to provide enhanced transient performance farther away from the origin than was achieved with the LQR controller.</description><subject>Actuators</subject><subject>Applied sciences</subject><subject>Automotive engineering</subject><subject>Coils</subject><subject>Computer science; control theory; systems</subject><subject>Control</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Control theory. Systems</subject><subject>Design engineering</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>engines</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Internal combustion engines</subject><subject>Lyapunov functions</subject><subject>Lyapunov method</subject><subject>Magnetic flux</subject><subject>Magnetic levitation</subject><subject>nonlinear systems</subject><subject>optimal control</subject><subject>Riccati equations</subject><subject>Transient performance</subject><subject>Valves</subject><subject>Various equipment and components</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1rGzEQhkVooanbeyGXpdDmtI6-Risdi9N8QGgPcc9C1o6CwlpKpbWh_74yDgR6KDnNwDzvC8NDyCdGl4xRc7Fe3a-XnFJYaiWUMifklAHonmoFb9pOlegVCPWOvK_1kVImgQ-n5PJHTlNM6Ernc5pLnrqQS7d1Dwnn6LsJ93F2c8ypy6Fzuzlv8xz32GF6aLFu7yasH8jb4KaKH5_ngvy6-r5e3fR3P69vV9_uei81nXs1glQbNgbFNjCCA4bjCBCoE5ugBqlw5MOIngbjpBNaMGGCHqnjHhlKJhbk_Nj7VPLvHdbZbmP1OE0uYd5Vq7WRjHNDG_n1vyTXBgbBzStAKrWQsoGf_wEf866k9q7VqlWBAt4geoR8ybUWDPapxK0rfyyj9qDJHjTZgyZ71NQiX557XfVuCsUlH-tLbgAwsslbkLMjFxHx5Qxm4O36F5pgmu4</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Peterson, K.S.</creator><creator>Grizzle, J.W.</creator><creator>Stefanopoulou, A.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20060301</creationdate><title>Nonlinear control for magnetic levitation of automotive engine vales</title><author>Peterson, K.S. ; Grizzle, J.W. ; Stefanopoulou, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-6d546b1df61b5d5a51edd55f0a3bf6746ed27dec0f9a4a383139f8d0a2ce1e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actuators</topic><topic>Applied sciences</topic><topic>Automotive engineering</topic><topic>Coils</topic><topic>Computer science; control theory; systems</topic><topic>Control</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Control theory. Systems</topic><topic>Design engineering</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>engines</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Internal combustion engines</topic><topic>Lyapunov functions</topic><topic>Lyapunov method</topic><topic>Magnetic flux</topic><topic>Magnetic levitation</topic><topic>nonlinear systems</topic><topic>optimal control</topic><topic>Riccati equations</topic><topic>Transient performance</topic><topic>Valves</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, K.S.</creatorcontrib><creatorcontrib>Grizzle, J.W.</creatorcontrib><creatorcontrib>Stefanopoulou, A.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peterson, K.S.</au><au>Grizzle, J.W.</au><au>Stefanopoulou, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear control for magnetic levitation of automotive engine vales</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2006-03-01</date><risdate>2006</risdate><volume>14</volume><issue>2</issue><spage>346</spage><epage>354</epage><pages>346-354</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Position regulation of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design. It is shown experimentally that by selecting the CLF based on the solution to an algebraic Riccati equation it is possible to tune the performance of the controller using intuition from classical LQR control. The CLF is used with Sontag's universal stabilizing feedback to provide enhanced transient performance farther away from the origin than was achieved with the LQR controller.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2005.863669</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2006-03, Vol.14 (2), p.346-354
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_miscellaneous_889412290
source IEEE Electronic Library (IEL)
subjects Actuators
Applied sciences
Automotive engineering
Coils
Computer science
control theory
systems
Control
Control system synthesis
Control systems
Control theory
Control theory. Systems
Design engineering
Electrical engineering. Electrical power engineering
Electromagnets
engines
Exact sciences and technology
Feedback
Internal combustion engines
Lyapunov functions
Lyapunov method
Magnetic flux
Magnetic levitation
nonlinear systems
optimal control
Riccati equations
Transient performance
Valves
Various equipment and components
title Nonlinear control for magnetic levitation of automotive engine vales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20control%20for%20magnetic%20levitation%20of%20automotive%20engine%20vales&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Peterson,%20K.S.&rft.date=2006-03-01&rft.volume=14&rft.issue=2&rft.spage=346&rft.epage=354&rft.pages=346-354&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2005.863669&rft_dat=%3Cproquest_RIE%3E889412290%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867325652&rft_id=info:pmid/&rft_ieee_id=1597206&rfr_iscdi=true