Small Secret CRT-Exponent Attacks on Takagi's RSA

CRT-RSA is a variant of RSA, which uses integers dp = d mod(p - 1) and dq = d mod(q - 1) (CRT-exponents), where d,p,q are the secret keys of RSA. May proposed a method to obtain the secret key in polynomial time if a CRT-exponent is small, moreover Bleichenbacher and May improved this method. On the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2011/01/01, Vol.E94.A(1), pp.19-27
Hauptverfasser: SHINOHARA, Naoyuki, IZU, Tetsuya, KUNIHIRO, Noboru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 19
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E94.A
creator SHINOHARA, Naoyuki
IZU, Tetsuya
KUNIHIRO, Noboru
description CRT-RSA is a variant of RSA, which uses integers dp = d mod(p - 1) and dq = d mod(q - 1) (CRT-exponents), where d,p,q are the secret keys of RSA. May proposed a method to obtain the secret key in polynomial time if a CRT-exponent is small, moreover Bleichenbacher and May improved this method. On the other hand, Takagi's RSA is a variant of CRT-RSA, whose public key N is of the form prq for a given positive integer r. In this paper, we extend the May's method and the Bleichenbacher-May's method to Takagi's RSA, and we show that we obtain p in polynomial time if $p < N^{3/(4 + 2 \\sqrt{r(r+3)})}$ by the extended May's method, and if $p < N^{6/(5r + \\sqrt{13r^2 + 48r})}$ by the extended Bleichenbacher-May's method, when dq is arbitrary small. If r=1, these upper bounds conform to May's and Bleichenbacher-May's results respectively. Moreover, we also show that the upper bound of pr increase with an increase in r. Since these attacks are heuristic algorithms, we provide several experiments which show that we can obtain the secret key in practice.
doi_str_mv 10.1587/transfun.E94.A.19
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889410909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889410909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-443cf4c4ff9c32e96d5b05bef62e62e1a2524bf1e7e11169fd5b31afb991f6543</originalsourceid><addsrcrecordid>eNplkEFLwzAYhoMoOKc_wFtvO7Xma5K2OZYxdSAI2zyHNH6Z3bp0Jhnov7djuovwwXv4nuc9vITcA81AVOVD9NoFe3DZTPKszkBekBGUXKTAWHlJRlRCkVaCVtfkJoQNpVDlwEcEljvddckSjceYTBerdPa17x26mNQxarMNSe-Sld7qdTsJyWJZ35Irq7uAd785Jm-Ps9X0OX15fZpP65fUCKAx5ZwZyw23VhqWoyzeRUNFg7bIcTjQuch5YwFLBIBC2uHPQNtGSrCF4GxMJqfeve8_Dxii2rXBYNdph_0hqKqSHKikciDhRBrfh-DRqr1vd9p_K6DquI76W0cN66hawdGZn5xNiHqNZ0P72JoO_xnnBHlmzIf2Ch37ASGXdDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889410909</pqid></control><display><type>article</type><title>Small Secret CRT-Exponent Attacks on Takagi's RSA</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>SHINOHARA, Naoyuki ; IZU, Tetsuya ; KUNIHIRO, Noboru</creator><creatorcontrib>SHINOHARA, Naoyuki ; IZU, Tetsuya ; KUNIHIRO, Noboru</creatorcontrib><description>CRT-RSA is a variant of RSA, which uses integers dp = d mod(p - 1) and dq = d mod(q - 1) (CRT-exponents), where d,p,q are the secret keys of RSA. May proposed a method to obtain the secret key in polynomial time if a CRT-exponent is small, moreover Bleichenbacher and May improved this method. On the other hand, Takagi's RSA is a variant of CRT-RSA, whose public key N is of the form prq for a given positive integer r. In this paper, we extend the May's method and the Bleichenbacher-May's method to Takagi's RSA, and we show that we obtain p in polynomial time if $p &lt; N^{3/(4 + 2 \\sqrt{r(r+3)})}$ by the extended May's method, and if $p &lt; N^{6/(5r + \\sqrt{13r^2 + 48r})}$ by the extended Bleichenbacher-May's method, when dq is arbitrary small. If r=1, these upper bounds conform to May's and Bleichenbacher-May's results respectively. Moreover, we also show that the upper bound of pr increase with an increase in r. Since these attacks are heuristic algorithms, we provide several experiments which show that we can obtain the secret key in practice.</description><identifier>ISSN: 0916-8508</identifier><identifier>ISSN: 1745-1337</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.E94.A.19</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>CRT-exponent ; Electronics ; Heuristic methods ; Integers ; Keys ; lattice ; LLL ; Takagi's RSA ; Upper bounds</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011/01/01, Vol.E94.A(1), pp.19-27</ispartof><rights>2011 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-443cf4c4ff9c32e96d5b05bef62e62e1a2524bf1e7e11169fd5b31afb991f6543</citedby><cites>FETCH-LOGICAL-c510t-443cf4c4ff9c32e96d5b05bef62e62e1a2524bf1e7e11169fd5b31afb991f6543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27910,27911,27912</link.rule.ids></links><search><creatorcontrib>SHINOHARA, Naoyuki</creatorcontrib><creatorcontrib>IZU, Tetsuya</creatorcontrib><creatorcontrib>KUNIHIRO, Noboru</creatorcontrib><title>Small Secret CRT-Exponent Attacks on Takagi's RSA</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>CRT-RSA is a variant of RSA, which uses integers dp = d mod(p - 1) and dq = d mod(q - 1) (CRT-exponents), where d,p,q are the secret keys of RSA. May proposed a method to obtain the secret key in polynomial time if a CRT-exponent is small, moreover Bleichenbacher and May improved this method. On the other hand, Takagi's RSA is a variant of CRT-RSA, whose public key N is of the form prq for a given positive integer r. In this paper, we extend the May's method and the Bleichenbacher-May's method to Takagi's RSA, and we show that we obtain p in polynomial time if $p &lt; N^{3/(4 + 2 \\sqrt{r(r+3)})}$ by the extended May's method, and if $p &lt; N^{6/(5r + \\sqrt{13r^2 + 48r})}$ by the extended Bleichenbacher-May's method, when dq is arbitrary small. If r=1, these upper bounds conform to May's and Bleichenbacher-May's results respectively. Moreover, we also show that the upper bound of pr increase with an increase in r. Since these attacks are heuristic algorithms, we provide several experiments which show that we can obtain the secret key in practice.</description><subject>CRT-exponent</subject><subject>Electronics</subject><subject>Heuristic methods</subject><subject>Integers</subject><subject>Keys</subject><subject>lattice</subject><subject>LLL</subject><subject>Takagi's RSA</subject><subject>Upper bounds</subject><issn>0916-8508</issn><issn>1745-1337</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNplkEFLwzAYhoMoOKc_wFtvO7Xma5K2OZYxdSAI2zyHNH6Z3bp0Jhnov7djuovwwXv4nuc9vITcA81AVOVD9NoFe3DZTPKszkBekBGUXKTAWHlJRlRCkVaCVtfkJoQNpVDlwEcEljvddckSjceYTBerdPa17x26mNQxarMNSe-Sld7qdTsJyWJZ35Irq7uAd785Jm-Ps9X0OX15fZpP65fUCKAx5ZwZyw23VhqWoyzeRUNFg7bIcTjQuch5YwFLBIBC2uHPQNtGSrCF4GxMJqfeve8_Dxii2rXBYNdph_0hqKqSHKikciDhRBrfh-DRqr1vd9p_K6DquI76W0cN66hawdGZn5xNiHqNZ0P72JoO_xnnBHlmzIf2Ch37ASGXdDE</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>SHINOHARA, Naoyuki</creator><creator>IZU, Tetsuya</creator><creator>KUNIHIRO, Noboru</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110101</creationdate><title>Small Secret CRT-Exponent Attacks on Takagi's RSA</title><author>SHINOHARA, Naoyuki ; IZU, Tetsuya ; KUNIHIRO, Noboru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-443cf4c4ff9c32e96d5b05bef62e62e1a2524bf1e7e11169fd5b31afb991f6543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>CRT-exponent</topic><topic>Electronics</topic><topic>Heuristic methods</topic><topic>Integers</topic><topic>Keys</topic><topic>lattice</topic><topic>LLL</topic><topic>Takagi's RSA</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHINOHARA, Naoyuki</creatorcontrib><creatorcontrib>IZU, Tetsuya</creatorcontrib><creatorcontrib>KUNIHIRO, Noboru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHINOHARA, Naoyuki</au><au>IZU, Tetsuya</au><au>KUNIHIRO, Noboru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Secret CRT-Exponent Attacks on Takagi's RSA</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>E94.A</volume><issue>1</issue><spage>19</spage><epage>27</epage><pages>19-27</pages><issn>0916-8508</issn><issn>1745-1337</issn><eissn>1745-1337</eissn><abstract>CRT-RSA is a variant of RSA, which uses integers dp = d mod(p - 1) and dq = d mod(q - 1) (CRT-exponents), where d,p,q are the secret keys of RSA. May proposed a method to obtain the secret key in polynomial time if a CRT-exponent is small, moreover Bleichenbacher and May improved this method. On the other hand, Takagi's RSA is a variant of CRT-RSA, whose public key N is of the form prq for a given positive integer r. In this paper, we extend the May's method and the Bleichenbacher-May's method to Takagi's RSA, and we show that we obtain p in polynomial time if $p &lt; N^{3/(4 + 2 \\sqrt{r(r+3)})}$ by the extended May's method, and if $p &lt; N^{6/(5r + \\sqrt{13r^2 + 48r})}$ by the extended Bleichenbacher-May's method, when dq is arbitrary small. If r=1, these upper bounds conform to May's and Bleichenbacher-May's results respectively. Moreover, we also show that the upper bound of pr increase with an increase in r. Since these attacks are heuristic algorithms, we provide several experiments which show that we can obtain the secret key in practice.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.E94.A.19</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011/01/01, Vol.E94.A(1), pp.19-27
issn 0916-8508
1745-1337
1745-1337
language eng
recordid cdi_proquest_miscellaneous_889410909
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects CRT-exponent
Electronics
Heuristic methods
Integers
Keys
lattice
LLL
Takagi's RSA
Upper bounds
title Small Secret CRT-Exponent Attacks on Takagi's RSA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Secret%20CRT-Exponent%20Attacks%20on%20Takagi's%20RSA&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=SHINOHARA,%20Naoyuki&rft.date=2011-01-01&rft.volume=E94.A&rft.issue=1&rft.spage=19&rft.epage=27&rft.pages=19-27&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.E94.A.19&rft_dat=%3Cproquest_cross%3E889410909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889410909&rft_id=info:pmid/&rfr_iscdi=true